Log in

Urban ecological security dynamic analysis based on an innovative emergy ecological footprint method

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In China, with the rapid development of economy and the advancement of urbanization, the deterioration of urban ecological environment is obvious. In order to obtain the quantitative state of urban ecological security, this paper contributes an integrated and coupled emergy ecological footprint framework and Bei**g city was selected to verify methodology effect in this paper. The results demonstrate that: (1) from 2010 to 2019, the change range of EEFB is from 6.37 to 9.29%; meanwhile, EEFI is from 7.95 to 17.72%; EEFE is from 36.36 to 63.71%; EEFP is from 18.45% to 41.65%. Comparing the proportions of four subparts, the energy resource products (EEFE) and emissions (EEFP) are the main factors, far more significant than biological resources (EEFB) and industrial products (EEFI). (2) Compared to all ECCS data, there is a definite growing trend in Bei**g city, from 2.68E + 4 hm2/cap in 2010 to 4.72E+4 hm2/cap in 2019, approximately 42.22% growth range. (3) Four sustainable indicators analysis: The changes of EEFT, EBI, and EEF are from 3.1, 2.46, and 1.02 in 2010 to 0.688, 9.29 and 1.14 in 2019, respectively. For EDI, total proportions of fossil land and built-up land are 85.25% to 90.43% of the entire EEF in Bei**g city. These results reflect that Bei**g city is suffering from a substantial ecological challenge due to remarkable ecological deficit, awfully high emergy ecological footprint intensity, and low cooperation level between ecological system and economic system. To identify key improvement factors, Pearson correlation analysis was conducted in this paper and revealed the most positive and negative elements, which are the unbalanced industrial structure and a large proportion heavy and polluting industries in Bei**g city. Finally, based on the pivotal influencing factors, corresponding strategies and measures are proposed to improve and optimize the ecological security in Bei**g city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7.
Figure 8
Figure 9

Similar content being viewed by others

Reference

  • Afroza Nahar, M., Hasanuzzaman, N. A., & Rahim, S. Parvin. (2019). Numerical investigation on the effect of different parameters in enhancing heat transfer performance of photovoltaic thermal systems. Renewable Energy, 132, 284–295.

    Article  Google Scholar 

  • Arabhosseini, Akbar, Samimi-Akhijahani, Hadi, & Motahayyer, Mehrnosh. (2019). Increasing the energy and exergy efficiencies of a collector using porous and recycling system. Renewable Energy, 132, 308–325.

    Article  Google Scholar 

  • Ascione, M., Campanella, L., Cherubini, F., & Ulgiati, S. (2009). Environmental driving forces of urban growth and development. An emergy-based assessment of the city of Rome. Italy Landscap Urban Planning, 93, 238–249. https://doi.org/10.1016/j.landurbplan.2009.07.011.

    Article  Google Scholar 

  • Brown, M. T., & Ulgiati, S. (2010). Updated evaluation of exergy and emergy driving the geobiosphere: a review and refinement of the emergy baseline. Ecological Modelling, 221, 2501–2508.

    Article  Google Scholar 

  • Brown, M. T., & Ulgiati, S. (2016). Assessing the global environmental sources driving the geobiosphere: a revised emergy baseline. Ecological Modelling, 339, 126–132. https://doi.org/10.1016/j.ecolmodel.2016.03.017.

    Article  Google Scholar 

  • Cai, Wei, Liu, Conghu, Zhang, Cuixia, Ma, Minda, Rao, Weizhen, Li, Wenyi, He, Kang, & Gao, Mengdi. (2018). Develo** the ecological compensation criterion of industrial solid waste based on emergy for sustainable development. Energy, 157, 940–948.

    Article  Google Scholar 

  • Campbell, D. E. (1998). Emergy analysis of human carrying capacity and regional sustainability: an example using the State of Maine. Environmental Monitoring and Assessmrnt, 51, 531–569.

    Article  Google Scholar 

  • Chen, B., & Chen, G. Q. (2006). Ecological footprint accounting based on emergy-A case study of the Chinese society. Ecological Modelling, 198, 101–114. https://doi.org/10.1016/j.ecolmodel.2006.04.022.

    Article  Google Scholar 

  • Chen, B., & Chen, G. Q. (2007). Modified ecological footprint accounting and analysis based on embodied exergy-a case study of the Chinese society 1981–2001. Ecological Modelling, 61, 355–376. https://doi.org/10.1016/j.ecolecon.2006.03.009.

    Article  Google Scholar 

  • Chen, G. Q., & Chen, B. (2009). Extended-exergy analysis of the Chinese society. Energy, 34(9), 1127–1144.

    Article  Google Scholar 

  • Chen, S., & Chen, B. (2015). Urban energy consumption: different insights from energy flow analysis, input-output analysis and ecological network analysis. Applied Energy, 138, 99–107. https://doi.org/10.1016/j.apenergy.2014.10.055.

    Article  Google Scholar 

  • Chen, S., & Chen, B. (2017). Changing urban carbon metabolism over time: historical trajectory and future pathway. Environmental Science Technology, 51, 7560–7571. https://doi.org/10.1021/acs.est.7b01694.

    Article  CAS  Google Scholar 

  • Chen, Wei. (2016). Life cycle based emergy analysis on China’s cement production. Journal of Cleaner Production, 131, 272–279.

    Article  Google Scholar 

  • Ludovic Gaudard, Franco Romerio, Francesco Dalla Valle, Roberta Gorret, Stefano Maran, Giovanni Ravazzani e, Markus Stoffel f, Michela Volonterio. Climate change impacts on hydropower in the Swiss and Italian Alps. Science of the Total Environment 493 (2014) 1211-1221.

  • Du, B., Zhang, K. M., Song, G. J., & Wen, Z. G. (2006). Methodology for an urban ecological footprint to evaluate sustainable development in China. International Journal of Sustaintable Development World Ecology, 13, 245–254.

    Article  CAS  Google Scholar 

  • Fang, C., Li, G., & Wang, S. (2016). Changing and differentiated urban landscape in China: spatiotemporal patterns and driving forces. Environment Science & Technology, 50, 2217–2227. https://doi.org/10.1021/acs.est.5b05198.

    Article  CAS  Google Scholar 

  • Fang, W., An, H., Li, H., Gao, X., Sun, X., & Zhong, W. (2017). Accessing on the sustainability of urban ecological-economic systems by means of a coupled emergy and system dynamics model: a case study of Bei**g. Energy Policy, 100, 326–337. https://doi.org/10.1016/j.enpol.2016.09.044.

    Article  Google Scholar 

  • Feng, K., Hubacek, K., Sun, L., & Liu, Z. (2014). Consumption-based CO2 accounting of China’s megacities: The case of Bei**g, Tian**, Shanghai and Chongqing. Ecological Indicator, 47, 26–31. https://doi.org/10.1016/j.ecolind.2014.04.045.

    Article  Google Scholar 

  • Gan, Y., & Griffin, W. M. (2018). Analysis of life-cycle GHG emissions for iron ore mining and processing in China uncertainty and trends. Resources Policy, 58, 90–96. https://doi.org/10.1016/j.resourpol.2018.03.015.

    Article  Google Scholar 

  • Gao, L., Cui, S., Yang, D., Tang, L., Vause, J., **ao, L., Li, X., & Shi, L. (2016). Sustainability and Chinese urban settlements: Extending the metabolism model of emergy evaluation. Sustaintable Times, 8, 1–17. https://doi.org/10.3390/su8050459.

    Article  CAS  Google Scholar 

  • Geng, Y., 2012. Toward safe treatment of municipal solid wastes in China's urban areas. Environ. Sci. Technol. 7067-7068.

  • Geng, Y., Sarkis, J., Ulgiati, S., Zhang, P., 2013a. Measuring China's circular economy. Science 80-. 340, 1526-1527. https://doi.org/https://doi.org/10.1126/science.1227059.

  • Geng, Y., Zhang, L., Chen, X., Xue, B., Fujita, T., & Dong, H. (2014). Urban ecological footprint analysis: A comparative study between Shenyang in China and Kawasaki in Japan. Journal Cleaner Production, 75, 130–142. https://doi.org/10.1016/j.jclepro.2014.03.082.

    Article  Google Scholar 

  • Gonçalves, T., Silva, R. V., de Brito, J., Fernandez, J. M., & Esquinas, A. R. (2020). Mechanical and durability performance of mortars with fine recycled concrete aggregates and reactive magnesium oxide as partial cement replacement. Cement and Concrete Composites, 105, 103420.

    Article  Google Scholar 

  • Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global change and the ecology of cities. Science, 80(319), 756–760. https://doi.org/10.1126/science.1150195.

    Article  CAS  Google Scholar 

  • Guan, D., Gao, W., Su, W., Li, H., & Hokao, K. (2011). Modeling and dynamic assessment of urban economy-resource-environment system with a coupled system dynamics- geographic information system model. Ecological Indicator, 11, 1333–1344. https://doi.org/10.1016/j.ecolind.2011.02.007.

    Article  Google Scholar 

  • He, J., Wan, Y., Feng, L., Ai, J., & Wang, Y. (2016). An integrated data envelopment analysis and emergy-based ecological footprint methodology in evaluating sustainable development, a case study of Jiangsu Province. China Ecological Indicator, 70, 23–34. https://doi.org/10.1016/j.ecolind.2016.05.042.

    Article  Google Scholar 

  • He, **ngyang, Zheng, Zhengqi, Ma, Mengyang, Ying, Su., Yang, **, Tan, Hongbo, Wang, Yingbin, & Strnadel, Bohumír. (2020). New treatment technology: The use of wet-milling concrete slurry waste to substitute cement. Journal of Cleaner Production, 242, 118347.

    Article  Google Scholar 

  • Huang, S. L., Chen, Y. H., Kuo, F. Y., & Wang, S. H. (2011). Emergy-based evaluation of periurban ecosystem services. Ecological Complexity, 8, 38–50. https://doi.org/10.1016/j.ecocom.2010.12.002.

    Article  Google Scholar 

  • Huang, C.-L., Vause, J., Ma, H.-W., & Yu, C.-P. (2012). Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook. Resources Conserversation and Recycling, 68, 104–116. https://doi.org/10.1016/j.resconrec.2012.08.012.

    Article  Google Scholar 

  • Hubacek, K., Guan, D., Barrett, J., & Wiedmann, T. (2009). Environmental implications of urbanization and lifestyle change in China: Ecological and Water Footprints. Journal Cleaning Production, 17, 1241–1248. https://doi.org/10.1016/j.jclepro.2009.03.011.

    Article  Google Scholar 

  • Jim, C. Y., & Chen, W. Y. (2008). Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China). Journal Environment Management, 88, 665–676. https://doi.org/10.1016/j.jenvman.2007.03.035.

    Article  CAS  Google Scholar 

  • **, W., Xu, L., & Yang, Z. (2009). Modeling a policy making framework for urban sustainability: Incorporating system dynamics into the ecological footprint. Ecological Economics, 68, 2938–2949. https://doi.org/10.1016/j.ecolecon.2009.06.010.

    Article  Google Scholar 

  • Klopp, J. M., & Petretta, D. L. (2017). The urban sustainable development goal: Indicators, complexity and the politics of measuring cities. Cities, 63, 92–97. https://doi.org/10.1016/j.cities.2016.12.019.

    Article  Google Scholar 

  • Lei, K., Liu, L., Hu, D., & Lou, I. (2016). Mass, energy, and emergy analysis of the metabolism of Macao. Journal Cleaning Production, 114, 160–170. https://doi.org/10.1016/j.jclepro.2015.05.099.

    Article  Google Scholar 

  • Li, T., Li, W., & Qian, Z. (2010). Variations in ecosystem service value in response to land use changes in Shenzhen. Ecological Economics, 69, 1427–1435. https://doi.org/10.1016/j.ecolecon.2008.05.018.

    Article  Google Scholar 

  • Li, Z., Pan, L., Fu, F., Liu, P., Ma, L., & Amorelli, A. (2014). China’s regional disparities in energy consumption: An input-output analysis. Energy, 78, 426–438. https://doi.org/10.1016/j.energy.2014.10.030.

    Article  Google Scholar 

  • Liu, G. Y., Yang, Z. F., Chen, B., Zhang, Y., Zhang, L. X., Zhao, Y. W., & Jiang, M. M. (2009). Emergy-based urban ecosystem health assessment: A case study of Baotou China. Commun. Nonlinear Sci. Numer. Simulat., 14, 972–981. https://doi.org/10.1016/j.cnsns.2007.09.017.

    Article  Google Scholar 

  • Liu, G., Yang, Z., Chen, B., & Ulgiati, S. (2014). Emergy-based dynamic mechanisms of urban development, resource consumption and environmental impacts. Ecological Economics, 271, 90–102. https://doi.org/10.1016/j.ecolmodel.2013.08.014.

    Article  Google Scholar 

  • Liu, X., Liu, G., Yang, Z., Chen, B., & Ulgiati, S. (2016). Comparing national environmental and economic performances through emergy sustainability indicators: moving environmental ethics beyond anthropocentrism toward ecocentrism. . Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2015.12.188.

    Book  Google Scholar 

  • Liu, Gengyuan, Hao, Yan, Dong, Liang, Yang, Zhifeng, Zhang, Yan, & Ulgiati, Sergio. (2017). An emergy-LCA analysis of municipal solid waste management. Resources, Conservation and Recycling, 120, 131–143.

    Article  Google Scholar 

  • Liu, Taixiu, Baic, Zhang, Zheng, Zhimei, Liu, Qibin, Leid, **g, Sui, Jun, & **, Hongguang. (2019). 100 kWe power generation pilot plant with a solar thermochemical process: design, modeling, construction, and testing. Applied Energy, 251, 113217.

    Article  CAS  Google Scholar 

  • Lou, B., Qiu, Y., & Ulgiati, S. (2015). Emergy-based indicators of regional environmental sustainability: a case study in Shanwei, Guangdong. China. Ecol. Indicat., 57, 514–524. https://doi.org/10.1016/j.ecolind.2015.03.017.

    Article  Google Scholar 

  • Luís, P. A., Nélson, M., & Joaquim, B. G. (2016). A review of emergy theory, its application and latest developments. Renew. Sustain. Energy Rev., 54, 882–888.

    Article  Google Scholar 

  • Meteorological data for Bei**g, 2019. http://www.weather.com.cn/cityintro/101010100.shtml.

  • Moore, J., Kissinger, M., & Rees, W. E. (2013). An urban metabolism and ecological footprint assessment of Metro Vancouver. J. Environ. Manag., 124, 51–61. https://doi.org/10.1016/j.jenvman.2013.03.009.

    Article  Google Scholar 

  • Nakajima, E. S., & Ortega, E. (2016). Carrying capacity using emergy and a new calculation of the ecological footprint. Ecol. Indicat., 60, 1200–1207. https://doi.org/10.1016/j.ecolind.2015.08.054.

    Article  Google Scholar 

  • National Bureau of Statistics of China, 2019. China Statistical Yearbook. Bei**g Chinese Stat. Bur, p. 62791819. http://www.stats.gov.cn/tjsj/ndsj/2007/indexee.htm.

  • Odum, H.T., 1996. Environmental Accounting. Emergy and Environmental Decision Making, vol. 370. John Wiley Sons, INC. https://doi.org/https://doi.org/10.1017/CBO9781107415324.004.

  • Odum, H.T., 2000. Handbook of emergy Evaluation (Folio #2): Emergy of Global Processes. Center for Environmental Policy Environmental Engineering Sciences Box 116450 University of Florida Gainesville, 32622-6450, pp. 17-18.

  • Ohnishi, S., Dong, H., Geng, Y., Fujii, M., & Fujita, T. (2017). A comprehensive evaluation on industrial & urban symbiosis by combining MFA, carbon footprint and emergy methods-case of Kawasaki. Japan. Ecol. Indic., 73, 315–324. https://doi.org/10.1016/j.ecolind.2016.10.016.

    Article  CAS  Google Scholar 

  • Pan, H., Zhang, X., Wu, J., Zhang, Y., Lin, L., Yang, G., Deng, S., Li, L., Yu, X., Qi, H., & Peng, H. (2016). Sustainability evaluation of a steel production system in China based on emergy. J. Clean. Prod., 112, 1498–1509.

    Article  Google Scholar 

  • Pan, H., Geng, Y., Jiang, P., Dong, H., Sun, L., & Wu, R. (2018). An emergy based sustainability evaluation on a combined landfill and LFG power generation system. Energy, 143, 310–322. https://doi.org/10.1016/j.energy.2017.10.144.

    Article  Google Scholar 

  • Hengyu Pan, Mufan Zhuang, Yong Geng, FeiWu, Huijuan Dong. Emergy-based ecological footprint analysis for a mega-city: The dynamic changes of Shanghai. Journal of Cleaner Production 210 (2019) 552-562.

  • Peng, W., Wang, X., Li, X., & He, C. (2018). Sustainability evaluation based on the emergy ecological footprint method: a case study of Qingdao, China, from 2004 to 2014. Ecol. Indicat., 85, 1249–1261.

    Article  Google Scholar 

  • Peronato, G., Rastogi, P., Rey, E., & Andersen, M. (2018). A toolkit for multi-scale map** of the solar energy-generation potential of buildings in urban environments under uncertainty. Solar Energy, 173, 861–874.

    Article  Google Scholar 

  • Rees, W., & Wackernagel, M. (1996). Urban ecological footprints: why cicites cannot be sustainable- and why they are a key to sustainability. Environ. Impact Assess. Rev., 16, 223–248.

    Article  Google Scholar 

  • Rosado, L., Niza, S., & Ferr~ao, P., . (2014). A material flow accounting case study of the lisbon metropolitan area using the urban metabolism analyst model. J. Ind. Ecol., 18, 84–101. https://doi.org/10.1111/jiec.12083.

    Article  Google Scholar 

  • Sayed SAID, Mokhtar ALY, Bálint HARTMANN. A robust SMES control for enhancing stability of distribution systems fed from intermittent wind power generation. Turkish Journal of Electrical Engineering & Computer Sciences (2019) 27: 3883-3898.

  • Statistical yearbook of Bei**g from 2010 to 2019. http://202.96.40.155/nj/main/2019-tjnj/zk/indexch.htm

  • Su, M., & Fath, B. D. (2012). Spatial distribution of urban ecosystem health in Guangzhou. China. Ecol. Indicat., 15, 122–130. https://doi.org/10.1016/j.ecolind.2011.09.040.

    Article  Google Scholar 

  • Su, M. R., Yang, Z. F., Chen, B., & Ulgiati, S. (2009). Urban ecosystem health assessment based on emergy and set pair analysis-A comparative study of typical Chinese cities. Ecol. Model., 220, 2341–2348. https://doi.org/10.1016/j.ecolmodel.2009.06.010.

    Article  Google Scholar 

  • Sun, L., Dong, H., Geng, Y., Li, Z., Liu, Z., Fujita, T., Ohnishi, S., & Fujii, M. (2016). Uncovering driving forces on urban metabolism - a case of Shenyang. J. Clean. Prod., 114, 171–179. https://doi.org/10.1016/j.jclepro.2015.05.053.

    Article  Google Scholar 

  • Shengwen Tang, **gtao Chen, Peigui Sun, Yang Li, Peng Yu, E. Chen. Current and future hydropower development in Southeast Asia countries (Malaysia, Indonesia, Thailand and Myanmar). Energy Policy 129 (2019) 239-249.

  • Turner, K., Lenzen, M., Wiedmann, T., & Barrett, J. (2007). Examining the global environmental impact of regional consumption activities - Part 1: a technical note on combining input-output and ecological footprint analysis. Ecol. Econ., 62, 37–44. https://doi.org/10.1016/j.ecolecon.2006.12.002.

    Article  Google Scholar 

  • Ukidwe, N. U., & Bakshi, B. R. (2004). Thermodynamic accounting of ecosystem contribution to economic sectors with application to 1992 U.S. economy. Environ. Sci. Technol., 38, 4810–4827. https://doi.org/10.1021/es035367t.

    Article  CAS  Google Scholar 

  • Ulanowicz, R. E. (1986). Growth and development. . Springer- Verlag, New York.

    Book  Google Scholar 

  • Ulgiati, S., & Brown, M. T. (2002). Quantifying the environmental support for dilution and abatement of process emissions: the case of electricity production. J. Clean. Prod., 10, 335–348. https://doi.org/10.1016/S0959-6526(01)00044-0.

    Article  Google Scholar 

  • United Nations. (2016). Sustainable Development GOALS - 17 Goals to Transform Our World. . Sustain. Dev. goals - United Nations.

    Google Scholar 

  • Vega-AzamarGlausHauslerOropeza-GarcíaRomero-Lopez, R. E. M. R. N. A. R. (2013). An emergy analysis for urban environmental sustainability assessment, the Island of Montreal. Canada. Landsc. Urban Plann., 118, 18–28. https://doi.org/10.1016/j.landurbplan.2013.06.001.

    Article  Google Scholar 

  • Viglia, S., Civitillo, D. F., Cacciapuoti, G., & Ulgiati, S. (2016). Indicators of environmental loading and sustainability of urban systems. An emergy-based environmental footprint. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2017.03.060.

    Article  Google Scholar 

  • Wackernagel, M. (1999). Why sustainability ananlysis must include biophysical assessment. Ecol. Econ., 29, 13–15.

    Article  Google Scholar 

  • Wackernagel, M., Rees, W., Wacker nagel, M., Meredith Burke, B.(1997). M. Wackernagel, W. Rees our ecological footprint: reducing human impact on the earth new society publishers. C. Popul. Environ. Times, 19, 185–188.

    Article  Google Scholar 

  • Wackernagel, M., Onisto, L., Bello, P., Linares, A.C., Falfan, I. S. L.., García, J.M, Guerrero, A. I. S.,Guerrero, M. G. S.,(1999). National natural capital accounting with the ecological footprint concept. Ecol. Econ., 29, 375–390. https://doi.org/10.1016/S0921-8009(98)90063-5.

    Article  Google Scholar 

  • Wackernagel, M., Kitzes, J., Moran, D., Goldfinger, S., & Thomas, M. (2006). The Ecological Footprint of cities and regions: comparing resource availability with resource demand. Environ. Urbanization, 18, 103–112. https://doi.org/10.1177/0956247806063978.

    Article  Google Scholar 

  • Wang, J. N., Yu, F., & Cao, D. (2006). Study report 2004 for green national economic accounting. China Popul. Resour. Environ., 16, 11–17.

    Google Scholar 

  • Wang, Y., Yu, H. X., & Lv, D. (2011). Analysis on dynamic ecological security and development capacity of 2005–2009 in Qinhuangdao. China. Procedia Environ. Sci., 10, 607–612.

    Article  Google Scholar 

  • Wang, P., Deng, X., Zhou, H., & Qi, W. (2018). Responses of urban ecosystem health to precipitation extreme: a case study in Bei**g and Tian**. J. Clean. Prod., 177, 124–133. https://doi.org/10.1016/j.jclepro.2017.12.125.

    Article  Google Scholar 

  • Wang, Yimin, Zhao, Mingzhe, Chang, Jianxia, Wang, Xuebin, & Tian, Yuyu. (2019). Study on the combined operation of a hydro-thermal-wind hybrid power system based on hydro-wind power compensating principles. Energy Conversion and Management, 194, 94–111.

    Article  Google Scholar 

  • Wanjiru, Evan, & **a, **aohua. (2017). Optimal energy-water management in urban residential buildings through grey water recycling. Sustainable Cities and Society, 32, 654–668.

    Article  Google Scholar 

  • WCED. (1987). World Commission on Environment and Development. . Oxford University Press, Oxford, UK.

    Google Scholar 

  • Wu, R., Dai, H., Geng, Y., **e, Y., Masui, T., Liu, Z., & Qian, Y. (2017). Economic impacts from pm 2.5 pollution-related health effects: a case study in Shanghai. Environ. Sci. Technol., 51, 5035–5042. https://doi.org/10.1021/acs.est.7b00026.

    Article  CAS  Google Scholar 

  • **e, H.Y., Wang, L.L., Chen, X.S., 2008. Improvement and Application of Ecological Footprint Evaluation Model. Chemical Industry Press, Bei**g in Chinese.

  • Xu, W., **ao, Y., Zhang, J., Yang, W., Zhang, L., Hull, V., Wang, Z., Zheng, H., Liu, J., Polasky, S., Jiang, L., **ao, Y., Shi, X., Rao, E., Lu, F., Wang, X., Daily, G.C., Ouyang, Z., 2017. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. U. S. A 114, 201620503. https://doi.org/10.1073/pnas.1620503114.

  • Yang, Q., Liu, G., Hao, Y., Coscieme, L., Zhang, J., Jiang, N., Casazza, M., & Giannetti, B. F. (2018). Quantitative analysis of the dynamic changes of ecological security in the provinces of China through emergy-ecological footprint hybrid indicators. J. Clean. Prod., 184, 678–695. https://doi.org/10.1016/j.jclepro.2018.02.271.

    Article  Google Scholar 

  • Zhang, Junxue, & Ma, Lin. (2020). Environmental sustainability assessment of a new sewage treatment plant in china based on infrastructure construction and operation phases emergy analysis. Water, 12, 484.

    Article  Google Scholar 

  • Zhang, K.M., Wen, Z.G., Du, B., Song, G.J., 2003. Evaluation and Index System of Ecological City. Chemical Industry Press, Bei**g in Chinese.

  • Zhang, X., Jiang, W., Deng, S., & Peng, K. (2009). Emergy evaluation of the sustainability of Chinese steel production during 1998–2004. J. Clean. Prod., 17, 1030–1038. https://doi.org/10.1016/j.jclepro.2009.02.014.

    Article  CAS  Google Scholar 

  • Zhang, L. X., Chen, B., Yang, Z. F., Chen, G. Q., Jiang, M. M., & Liu, G. Y. (2009). Comparison of typical mega cities in China using emergy synthesis. Commun. Nonlinear Sci. Numer. Simulat., 14, 2827–2836. https://doi.org/10.1016/j.cnsns.2008.03.018.

    Article  Google Scholar 

  • Zhang, L., Xue, B., Geng, Y., Ren, W., & Lu, C. (2014). Emergy-based city’s sustainability and decoupling assessment: indicators, features and findings. Sustain. Times, 6, 952–966. https://doi.org/10.3390/su6020952.

    Article  Google Scholar 

  • Zhang, X., Qi, Y., Wang, Y., Wu, J., Lin, L., Peng, H., Qi, H., Yu, X., & Zhang, Y. (2016). Effect of the tap water supply system on China’s economy and energy consumption, and its emissions’ impact. Renew. Sustain. Energy Rev., 64, 660–671.

    Article  Google Scholar 

  • Zhang, X. H., Zhang, R., Wu, J., Zhang, Y. Z., Lin, L. L., Deng, S. H., Li, L., Yang, G., Yu, X. Y., Qi, H., & Peng, H. (2016). An emergy evaluation of the sustainability of Chinese crop production system during 2000–2010. Ecol. Indicat., 60, 622–633. https://doi.org/10.1016/j.ecolind.2015.08.004.

    Article  Google Scholar 

  • Zhang, Y., Zheng, H., Yang, Z., Li, Y., Liu, G., Su, M., & Yin, X. (2016). Urban energy flow processes in the Bei**g-Tian**-Hebei (**g-**-Ji) urban agglomeration: Combining multi-regional input-output tables with ecological network analysis. Journal Cleaner Production, 114, 243–256. https://doi.org/10.1016/j.jclepro.2015.06.093.

    Article  Google Scholar 

  • Zhang, Junxue, Ma, Lin, & Yan, Yanyan. (2020). A Dynamic comparison sustainability study of standard wastewater treatment system in the straw pulp papermaking process and printing & dyeing papermaking process based on the hybrid neural network and emergy framework. Water, 12, 1781. https://doi.org/10.3390/w12061781.

    Article  CAS  Google Scholar 

  • Zhao, S., Li, Z., & Li, W. (2005). A modified method of ecological footprint calculation and its application. Ecological Modelling., 185, 65–75. https://doi.org/10.1016/j.ecolmodel.2004.11.016.

    Article  Google Scholar 

  • Zhou, J. B., Jiang, M. M., & Chen, B. (2009). Emergy evaluations for constructed wetland and conventional wastewater treatment. Commun. Nonlinear Science Numerical Simulation, 14, 1781–1789.

    Article  Google Scholar 

Download references

Acknowledgement

The work described in this paper was supported by the postgraduate research & Practice innovation program of Jiangsu province (KYCX18_0104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxue Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 326 KB)

Appendix

Appendix

All the data and detailed calculation process in the supplemental document.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Ma, L. Urban ecological security dynamic analysis based on an innovative emergy ecological footprint method. Environ Dev Sustain 23, 16163–16191 (2021). https://doi.org/10.1007/s10668-021-01341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01341-z

Keywords

Navigation