Log in

Simulation of Urban-Scale Air Pollution Patterns in Luxembourg: Contributing Sources and Emission Scenarios

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the air pollution situation in an urban area in southwestern Luxembourg and to simulate annual NO2 and PM10 concentrations in response to changes in meteorological conditions and emissions using a Gaussian dispersion model. Simulations are carried out for the years 1998–2006. Emission scenarios related to road transport and nonindustrial combustion are performed in order to predict changes of air pollution levels. Road transport is by far the most important local emission source in the study area. Scenarios with more stringent emission standards for vehicles, less traffic, and fewer heavy-duty vehicles lead to reductions of NOx and primary PM10 emissions. As a result, the annual NO2 concentrations are decreasing in most parts of the study area and are below the European annual limit value of 40 μg m−3. In contrast, a scenario with increased use of wood pellets for domestic heating shows an increase in urban PM10 concentration. The year-to-year variability of meteorological conditions accounts for the same magnitude of absolute NO2 and PM10 concentration changes as the emission scenarios. The comparison with measurements located in the study area shows that the model is able to predict urban-scale annual average air pollution. The proposed application results show that the model can be appropriate for policy-driven air quality management and planning queries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vardoulakis, S., Fisher, B. E. A., Pericleous, K., & Gonzalez-Flesca, N. (2003). Modelling air quality in street canyons: a review. Atmospheric Environment, 37(2), 155–182.

    Article  CAS  Google Scholar 

  2. Holmes, N. S., & Morawska, L. (2006). A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available. Atmospheric Environment, 40(30), 5902–5928.

    Article  CAS  Google Scholar 

  3. Berkowicz, R., Ketzel, M., Jensen, S. S., Hvidberg, M., & Raaschou-Nielsen, O. (2008). Evaluation and application of OSPM for traffic pollution assessment for a large number of street locations. Environmental Modelling and Software, 23(3), 296–303.

    Article  Google Scholar 

  4. Berkowicz, R. (2000). OSPM—a parameterized street pollution model. Environmental Monitoring and Assessment, 65(1–2), 323–331.

    Article  CAS  Google Scholar 

  5. McHugh, C. A., Carruthers, D. J., & Edmunds, H. A. (1997). ADMS-Urban: an air quality management system for traffic, domestic and industrial pollution. International Journal of Environment and Pollution, 8(3–6), 666–675.

    CAS  Google Scholar 

  6. EEA (2006). Air pollution at street level in European cities. EEA technical report no. 1/2006. http://www.eea.europa.eu/publications/technical_report_2006_1. Accessed 21 Aug 2010.

  7. Hidalgo, J., Masson, V., Baklanov, A., Pigeon, G., & Gimeno, L. (2008). Advances in urban climate modelling. Trends and Directions in Climate Research: Annals of the New York Academy of Science, 1146, 354–374. doi:10.1196/annals.1446.015.

    Article  Google Scholar 

  8. **e, X., Liu, C.-H., & Leung, L. R. (2007). Impact of building facades and ground heating on wind flow and pollutant transport in street canyons. Atmospheric Environment, 41(39), 9030–9049.

    Article  CAS  Google Scholar 

  9. Assael, M. J., Delaki, M., & Kakosimos, K. E. (2008). Applying the OSPM model to the calculation of PM10 concentration levels in the historical centre of the city of Thessaloniki. Atmospheric Environment, 42(1), 65–77.

    Article  CAS  Google Scholar 

  10. Di Sabatino, S., Buccolieri, R., Pulvirenti, B., & Britter, R. E. (2008). Flow and pollutant dispersion in street canyons using FLUENT and ADMS-Urban. Environmental Modeling and Assessment, 13(3), 369–381.

    Article  Google Scholar 

  11. Hirtl, M., & Baumann-Stanzer, K. (2007). Evaluation of two dispersion models (ADMS-Roads and LASAT) applied to street canyons in Stockholm, London and Berlin. Atmospheric Environment, 41(28), 5959–5971.

    Article  CAS  Google Scholar 

  12. Vardoulakis, S., Valiantis, M., Milner, J., & ApSimon, H. (2007). Operational air pollution modelling in the UK—street canyon applications and challenges. Atmospheric Environment, 41(22), 4622–4637.

    Article  CAS  Google Scholar 

  13. Caputo, M., Gimenez, M., & Schlamp, M. (2003). Intercomparison of atmospheric dispersion models. Atmospheric Environment, 37(18), 2435–2449.

    Article  CAS  Google Scholar 

  14. Directive 2008/50/EC (2008). Of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32008L0050:en:NOT. Accessed 21, Aug 2010.

  15. Chang, J. C., & Hanna, S. R. (2004). Air quality model performance evaluation. Meteorology and Atmospheric Physics, 87(1–3), 167–196.

    Google Scholar 

  16. Venkatram, A. (2008). Computing and displaying model performance statistics. Atmospheric Environment, 42(28), 6862–6868.

    Article  CAS  Google Scholar 

  17. Beevers, S. D., & Carslaw, D. C. (2005). The impact of congestion charging on vehicle emissions in London. Atmospheric Environment, 39(1), 1–5.

    Article  CAS  Google Scholar 

  18. Mensink, C., & Cosemans, G. (2008). From traffic flow simulations to pollutant concentrations in street canyons and backyards. Environmental Modelling and Software, 23(3), 288–295.

    Article  Google Scholar 

  19. Moussiopoulos, Ν., Vlachokostas, C., Tsilingiridis, G., Douros, I., Hourdakis, E., Naneris, C., & Sidiropoulos, C. (2009). Air quality status in Greater Thessaloniki area and the emission reductions needed for attaining the EU air quality legislation. Science of the Total Environment, 407(4), 1268–1285.

    Article  CAS  Google Scholar 

  20. Piersanti, A., Monforti, F., & Zanini, G. (2005). Simulation of PM10 concentration patterns for a 2010 traffic scenario in Bologna, Italy. Environmental Modeling and Assessment, 10(4), 291–301.

    Article  Google Scholar 

  21. DIN EN 12341. (1999). Air quality—Determination of the PM10 fraction of suspended particulate matter - reference method and field test procedure to demonstrate reference equivalence of measurement methods. Berlin: German Version, Beuth Verlag GmbH.

    Google Scholar 

  22. Lohmeyer Ingenieurbüro GmbH und Co. KG. (2007). Handbuch Modelsystem SelmaGIS Version 3.3 System zur Luftschadstoffimmissionsberechnung und Darstellung, Karlsruhe.

  23. Eichhorn, J. (1996). Validation of a microscale pollution dispersal model. In H. van Dop & G. Kallos (Eds.), Air pollution modelling and its application IX (pp. 539–548). New York: Plenum.

    Google Scholar 

  24. Lohmeyer, A., Baechlin, W., & Ketzel, M. (2000). The draft of the new German guideline VDI 3782/8 to model automobile exhaust dispersion. Environmental Monitoring and Assessment, 65(1–2), 381–387.

    Article  CAS  Google Scholar 

  25. Ketzel, M., Berkowicz, R., & Lohmeyer, A. (2000). Comparison of numerical street dispersion models with results from wind tunnel and field measurements. Environmental Monitoring and Assessment, 65(1–2), 363–370.

    Article  CAS  Google Scholar 

  26. VDI 3782 Part 1 (2001). Environmental meteorology–atmospheric dispersion models—Gaussian plume model for air quality management. In: VDI/DIN Handbuch Reinhaltung der Luft, Band 1b. Berlin: Beuth.

  27. VDI 3782 Part 8 (1998). Umweltmeteorologie—Ausbreitungsrechnung für Kfz-Emissionen. In: VDI/DIN Handbuch Reinhaltung der Luft, Band 1. Berlin: Beuth.

  28. Infras (2004). Handbook Emission Factors for Road Transport (HABEFA) Version 2.1, CD-ROM and Documentation, Bern.

  29. EEA (2009). EMEP/EEA air pollutant emission inventory guidebook—2009. EEA technical report no. 9/2009. http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009/#. Accessed 31 Aug 2012.

  30. Carslaw, D. C., Beevers, S. D., Westmoreland, E., Williams, M. L., Tate, J. E., Murrells, T., et al. (2011). Trends in NOx and NO2 emissions and ambient measurements in the UK. Version: July 2011. http://uk-air.defra.gov.uk/reports/cat05/1108251149_110718_AQ0724_Final_report.pdf. Accessed 1 Sept 2012.

  31. Carslaw, D. C., & Beevers, S. D. (2002). Dispersion modelling considerations for transient emissions from elevated point sources. Atmospheric Environment, 36(18), 3021–3029.

    Article  CAS  Google Scholar 

  32. Buchholz, S., Krein, A., Junk, J., Gutleb, A. C., Pfister, L., & Hoffmann, L. (2011). Modeling, measuring and characterizing airborne particles: case studies from southwestern Luxembourg. Critical Reviews in Environmental Science and Technology, 41(23), 2077–2096.

    Article  CAS  Google Scholar 

  33. Godowitch, J. M., Gilliland, A. B., Draxler, R. R., & Rao, S. T. (2008). Modeling assessment of point source NOx emission reductions on ozone air quality in the eastern United States. Atmospheric Environment, 42(1), 87–100.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the Ministère de la Culture, de l’Enseignement supérieur et de la Recherche (MESCR) and the National Research Fund in Luxembourg for the PhD scholarship of Saskia Buchholz (TR-PHD BFR07-045). Parts of the work have been done in the Small Particles - environmental behaviour and toxicity of nanomaterials and particulate matter project (SMALL) also funded by the MESCR. We thank the Administration des Ponts et Chaussées and Schroeder & Associés Ingénieurs-Conseils for providing traffic count data. We also thank Dr. Klaus Görgen (Centre de Recherche Public—Gabriel Lippmann) for processing support and data handling with the traffic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saskia Buchholz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchholz, S., Krein, A., Junk, J. et al. Simulation of Urban-Scale Air Pollution Patterns in Luxembourg: Contributing Sources and Emission Scenarios. Environ Model Assess 18, 271–283 (2013). https://doi.org/10.1007/s10666-012-9351-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-012-9351-1

Keywords

Navigation