Log in

Exposure to microcystin-LR in tropical reservoirs for water supply poses high risks for children and adults

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

While the presence of microcystin-LR (MC-LR) in raw water from eutrophic reservoirs poses human health concerns, the risks associated with the ingestion of MC-LR in drinking water are not fully elucidated. We used a time series of MC-LR in raw water from tropical urban reservoirs in Brazil to estimate the hazard quotients (HQs) for non-carcinogenic health effects and the potential ingestion of MC-LR through drinking water. We considered scenarios of MC-LR removal in the drinking water treatment plants (DWTPs) of two supply systems (Cascata and Guarapiranga). The former uses coagulation/flocculation/sedimentation/filtration/disinfection, while the latter has an additional step of membrane ultrafiltration, with contrasting expected MC-LR removal efficiencies. We considered reference values for infants (0.30 μg L−1), children/adults (1.60 μg L−1), or the population in general (1.0 μg L−1). For most scenarios for Cascata, the 95% upper confidence level of the HQ indicated high risks of exposure for the population (HQ > 1), particularly for infants (HQ = 30.910). The water treatment in Cascata was associated to the potential exposure to MC-LR due to its limited removal capacity, with up to 263 days/year with MC-LR above threshold values. The Guarapiranga system had the lowest MC-LR in the raw water as well as higher expected removal efficiencies in the DWTP, resulting in negligible risks. We reinforce the importance of integrating raw water quality characteristics and treatment technologies to reduce the risks of exposure to MC-LR, especially for vulnerable population groups. Our results can serve as a starting point for risk management strategies to minimize cases of MC-LR intoxication in Brazil and other develo** countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abbas, T., Kajjumba, G. W., Ejjada, M., Masrura, S. U., Marti, E. J., Khan, E., & Jones-Lepp, T. L. (2020). Recent advancements in the removal of cyanotoxins from water using conventional and modified adsorbents—A contemporary review. Water, 12, 2756. https://doi.org/10.3390/w12102756

    Article  CAS  Google Scholar 

  • Aguilera, A., Haakonsson, S., Martin, M. V., Salerno, G. L., & Echenique, R. O. (2018). Bloom-forming cyanobacteria and cyanotoxins in Argentina: A growing health and environmental concern. Limnologica, 69, 103–114. https://doi.org/10.1016/j.limno.2017.10.006

    Article  CAS  Google Scholar 

  • Akcaalan, R., Young, F. M., Metcalf, J. S., Morrison, L. F., Albay, M., & Codd, G. A. (2006). Microcystin analysis in single filaments of Planktothrix spp. in laboratory cultures and environmental blooms. Water Research, 40, 1583–1590. https://doi.org/10.1016/j.watres.2006.02.020

    Article  CAS  Google Scholar 

  • Almanza, V., Parra, O., De M., Bicudo, C. E., Baeza, C., Beltran, J., Figueroa, R., & Urrutia, R. (2016). Occurrence of toxic blooms of Microcystis aeruginosa in a central Chilean (36° Lat. S) urban lake. Revista Chilena de Historia Natural, 89, 8. https://doi.org/10.1186/s40693-016-0057-7

  • Almuhtaram, H., Cui, Y., Zamyadi, A., & Hofmann, R. (2018). Cyanotoxins and cyanobacteria cell accumulations in drinking water treatment plants with a low risk of bloom formation at the source. Toxins (basel)., 10, 430. https://doi.org/10.3390/toxins10110430

    Article  CAS  Google Scholar 

  • Amorim, C. A., Moura, A., & do N. (2021). Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning. Science of the Total Environment, 758, 143605. https://doi.org/10.1016/j.scitotenv.2020.143605

    Article  CAS  Google Scholar 

  • Antoniou, M. G., de La Cruz, A. A., Pelaez, M. A., Han, C., He, X., Dionysiou, D. D., Song, W., O’Shea, K., Ho, L., Newcombe, G., Dixon, M. B., Teixeira, M. R., Triantis, T. M., Hiskia, A., Kaloudis, T., Balasubramanian, R., Pavagadhi, S., & Sharma, V. K. (2014). Practices that prevent the formation of cyanobacterial blooms in water resources and remove cyanotoxins during physical treatment of drinking water. In Comprehensive water quality and purification, (pp. 173–195). Elsevier. https://doi.org/10.1016/B978-0-12-382182-9.00032-3

  • Aubriot, L., Zabaleta, B., Bordet, F., Sienra, D., Risso, J., Achkar, M., & Somma, A. (2020). Assessing the origin of a massive cyanobacterial bloom in the Río de la Plata (2019): Towards an early warning system. Water Research, 181, 115944. https://doi.org/10.1016/j.watres.2020.115944

    Article  CAS  Google Scholar 

  • Azevedo, S. M. F., Carmichael, W. W., Jochimsen, E. M., Rinehart, K. L., Lau, S., Shaw, G. R., & Eaglesham, G. K. (2002). Human intoxication by microcystins during renal dialysis treatment in Caruaru—Brazil. Toxicology, 181–182, 441–446. https://doi.org/10.1016/S0300-483X(02)00491-2

    Article  Google Scholar 

  • Barros, M. U. G., Wilson, A. E., Leitão, J. I. R., Pereira, S. P., Buley, R. P., Fernandez-Figueroa, E. G., & Capelo-Neto, J. (2019). Environmental factors associated with toxic cyanobacterial blooms across 20 drinking water reservoirs in a semi-arid region of Brazil. Harmful Algae, 86, 128–137. https://doi.org/10.1016/j.hal.2019.05.006

    Article  CAS  Google Scholar 

  • Bernard, C., Ballot, A., Thomazeau, S., Maloufi, S., Furey, A., Mankiewicz-Boczek, J., Pawlik-Skowrońska, B., Capelli, C., & Salmaso, N. (2017). Appendix 2: Cyanobacteria associated with the production of cyanotoxins. In Handbook of cyanobacterial monitoring and cyanotoxin analysis, (pp. 501–525). John Wiley & Sons, Ltd, Chichester, UK. https://doi.org/10.1002/9781119068761.app2

  • Bicudo, C. E., & de Campos Bicudo, D. (Eds.). (2017). 100 anos da represa Guarapiranga: lições e desafios. Editora CRV. https://doi.org/10.24824/978854441690.7

  • Brasil. (2019). Sistema de Informação de Vigilância da Qualidade da Água para Consumo Humano - SISAGUA [WWW Document]. Ministério da Saúde. http://sisagua.saude.gov.br/sisagua/login.jsf. Accessed 1 June 2019.

  • Brasil, J., Attayde, J. L., Vasconcelos, F. R., Dantas, D. D. F., & Huszar, V. L. M. (2016). Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia, 770, 145–164. https://doi.org/10.1007/s10750-015-2578-5

    Article  CAS  Google Scholar 

  • Brasil, M., & da S. (2017). Portaria de Consolidação No5 [WWW Document]. 28 Setembro.

  • Brasil, M., & da S. (2021). Portaria GM/MS No 888, de 4 de Maio de 2021.

  • CETESB. (2014). Qualidade das Águas Interiores no Estado de São Paulo - 2013. São Paulo.

  • CETESB. (2015). Qualidade das Águas Interiores no Estado de São Paulo - 2014. São Paulo.

  • CETESB. (2016). Qualidade das Águas Interiores no Estado de São Paulo - 2015. São Paulo.

  • CETESB. (2018). Qualidade das Águas Interiores no Estado de São Paulo 2017. São Paulo.

  • CETESB. (2017). Qualidade das Águas Interiores no Estado de São Paulo - 2016. São Paulo.

  • CETESB. (2019a). Qualidade das Águas Interiores no Estado de São Paulo - 2018. São Paulo.

  • CETESB. (2019b). Infoáguas [WWW Document]. Cia. Ambient. do Estado São Paulo. https://sistemainfoaguas.cetesb.sp.gov.br/. Accessed 1 May 2019.

  • CETESB. (2020). Qualidade das Águas Interiores no Estado de São Paulo - 2019. São Paulo.

  • Chorus, I., & Welker, M. (2021). Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management (p. 858). Taylor & Francis. https://doi.org/10.1201/9781003081449

  • Chorus, I., & Bartram, J. (1999). Toxic cyanobacteria in water: A guide to their public health consequence monitoring and management. In Freshwater biology, (pp. 1–400). London. https://doi.org/10.1046/j.1365-2427.2003.01107.x

  • Codd, G. A., Testai, E., Funari, E., & Svirčev, Z. (2020). Cyanobacteria, cyanotoxins, and human health. In Water treatment for purification from cyanobacteria and cyanotoxins, (pp. 37–68). Wiley. https://doi.org/10.1002/9781118928677.ch2

  • Cunha, D. G. F., Dodds, W. K., & Loiselle, S. A. (2018). Factors related to water quality and thresholds for microcystin concentrations in subtropical Brazilian reservoirs. Inland Waters, 8(3), 368–380. https://doi.org/10.1080/20442041.2018.1492526

    Article  CAS  Google Scholar 

  • Cunha, D. G. F., Sabogal-Paz, L. P., & Dodds, W. K. (2016). Land use influence on raw surface water quality and treatment costs for drinking supply in São Paulo State (Brazil). Ecological Engineering, 94, 516–524. https://doi.org/10.1016/j.ecoleng.2016.06.063

    Article  Google Scholar 

  • Daly, R. I., Ho, L., & Brookes, J. D. (2007). Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation. Environmental Science and Technology, 41, 4447–4453. https://doi.org/10.1021/es070318s

    Article  CAS  Google Scholar 

  • Devi, A., Chiu, Y.-T., Hsueh, H.-T., & Lin, T.-F. (2021). Quantitative PCR based detection system for cyanobacterial geosmin/2-methylisoborneol (2-MIB) events in drinking water sources: Current status and challenges. Water Research, 188, 116478. https://doi.org/10.1016/j.watres.2020.116478

    Article  CAS  Google Scholar 

  • Dixon, M. B., Falconet, C., Ho, L., Chow, C. W. K., Neill, B. K. O., & Newcombe, G. (2011). Removal of cyanobacterial metabolites by nanofiltration from two treated waters. Journal of Hazardous Materials, 188, 288–295. https://doi.org/10.1016/j.jhazmat.2011.01.111

    Article  CAS  Google Scholar 

  • Dörr, F. A., Pinto, E., Soares, R. M., de Oliveira, F., & e Azevedo, S. M. (2010). Microcystins in South American aquatic ecosystems: Occurrence, toxicity and toxicological assays. Toxicon, 56, 1247–1256. https://doi.org/10.1016/j.toxicon.2010.03.018

    Article  CAS  Google Scholar 

  • Drikas, M., Chow, C. W. K., House, J., & Burch, M. D. (2001). Using coagulation, flocculation, and settling to remove toxic cyanobacteria. Journal American Water Works Association, 93, 100–111. https://doi.org/10.1002/j.1551-8833.2001.tb09130.x

    Article  Google Scholar 

  • Ewerts, H., Swanepoel, A., & Du Preez, H. (2013). Efficacy of conventional drinking water treatment processes in removing problem-causing phytoplankton and associated organic compounds. Water SA, 39, 739. https://doi.org/10.4314/wsa.v39i5.19

    Article  CAS  Google Scholar 

  • Fawell, J. K., Mitchell, R. E., Everett, D. J., & Hill, R. E. (1999). The toxicity of cyanobacterial toxins in the mouse: I Microcystin-LR. Human and Experimental Toxicology, 18, 162–167. https://doi.org/10.1177/096032719901800305

    Article  CAS  Google Scholar 

  • Forde, M., Izurieta, R., & Ôrmeci, B. (2019). Water quality in the Americas, water and health. The Inter-American Network of Academies of Sciences IANAS, México.

  • Fontana, L., Albuquerque, A. L. S., Brenner, M., Bonotto, D. M., Sabaris, T. P. P., Pires, M. A. F., Cotrim, M. E. B., & Bicudo, D. C. (2014). The eutrophication history of a tropical water supply reservoir in Brazil. Journal of Paleolimnology, 51, 29–43. https://doi.org/10.1007/s10933-013-9753-3

    Article  Google Scholar 

  • Funari, E., & Testai, E. (2008). Human health risk assessment related to cyanotoxins exposure. Critical Reviews in Toxicology, 38, 97–125. https://doi.org/10.1080/10408440701749454

    Article  CAS  Google Scholar 

  • Gaget, V., Humpage, A. R., Huang, Q., Monis, P., & Brookes, J. D. (2017). Benthic cyanobacteria: A source of cylindrospermopsin and microcystin in Australian drinking water reservoirs. Water Research, 124, 454–464. https://doi.org/10.1016/j.watres.2017.07.073

    Article  CAS  Google Scholar 

  • Giannuzzi, L., Sedan, D., Echenique, R., & Andrinolo, D. (2011). An acute case of intoxication with cyanobacteria and cyanotoxins in recreational water in Salto Grande Dam. Argentina Marine Drugs, 9, 2164–2175. https://doi.org/10.3390/md9112164.

    Article  CAS  Google Scholar 

  • Gijsbertsen-Abrahamse, A. J., Schmidt, W., Chorus, I., & Heijman, S. G. J. (2006). Removal of cyanotoxins by ultrafiltration and nanofiltration. Journal of Membrane Science, 276, 252–259. https://doi.org/10.1016/j.memsci.2005.09.053.

    Article  CAS  Google Scholar 

  • Grandjean, A. C. (2004). Water requirements, im**ing factors, and recommended intakes. Water, sanitation and health protection and the human environment (pp. 25–34). World Health Organization.

    Google Scholar 

  • He, J., Li, G., Chen, J., Lin, J., Zeng, C., Chen, J., Deng, J., & **e, P. (2017). Prolonged exposure to low-dose microcystin induces nonalcoholic steatohepatitis in mice: A systems toxicology study. Archives of Toxicology, 91, 465–480. https://doi.org/10.1007/s00204-016-1681-3

    Article  CAS  Google Scholar 

  • He, X., Liu, Y., Conklin, A., Westrick, J., Weavers, L. K., Dionysiou, D. D., Lenhart, J. J., Mouser, P. J., Szlag, D., & Walker, H. W. (2016). Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful Algae, 54, 174–193. https://doi.org/10.1016/j.hal.2016.01.001

    Article  CAS  Google Scholar 

  • Heinze, R. (1999). Toxicity of the cyanobacterial toxin microcystin-LR to rats after 28 days intake with the drinking water. Environmental Toxicology, 14, 57–60. https://doi.org/10.1002/(SICI)1522-7278(199902)14:1%3c57:AID-TOX9%3e3.0.CO;2-J

    Article  CAS  Google Scholar 

  • Ho, J. C., Michalak, A. M., & Pahlevan, N. (2019). Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature, 574, 667–670. https://doi.org/10.1038/s41586-019-1648-7

    Article  CAS  Google Scholar 

  • Hoeger, S. J., Shaw, G., Hitzfeld, B. C., & Dietrich, D. R. (2004). Occurrence and elimination of cyanobacterial toxins in two Australian drinking water treatment plants. Toxicon, 43, 639–649. https://doi.org/10.1016/j.toxicon.2004.02.019

    Article  CAS  Google Scholar 

  • Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16, 471–483. https://doi.org/10.1038/s41579-018-0040-1

    Article  CAS  Google Scholar 

  • IARC. (2010). Ingested nitrate and nitrite, and cyanobacterial peptide toxins. IARC Press.

    Google Scholar 

  • Ibelings, B. W., Backer, L. C., Kardinaal, W. E. A., & Chorus, I. (2014). Current approaches to cyanotoxin risk assessment and risk management around the globe. Harmful Algae, 40, 63–74. https://doi.org/10.1016/j.hal.2014.10.002

    Article  CAS  Google Scholar 

  • Jiang, P., Liu, X., Zhang, J., Te, S. H., Gin, K.Y.-H., Fan, Y. V., Klemeš, J. J., & Shoemaker, C. A. (2021). Cyanobacterial risk prevention under global warming using an extended Bayesian network. Journal of Cleaner Production, 312, 127729. https://doi.org/10.1016/j.jclepro.2021.127729

    Article  Google Scholar 

  • Kelly, N. E., Javed, A., Shimoda, Y., Zastepa, A., Watson, S., Mugalingam, S., & Arhonditsis, G. B. (2019). A Bayesian risk assessment framework for microcystin violations of drinking water and recreational standards in the Bay of Quinte, Lake Ontario. Canada Water Research, 162, 288–301. https://doi.org/10.1016/j.watres.2019.06.005.

    Article  CAS  Google Scholar 

  • Kouakou, C. R. C., & Poder, T. G. (2019). Economic impact of harmful algal blooms on human health: A systematic review. Journal of Water and Health, 17, 499–516. https://doi.org/10.2166/wh.2019.064

    Article  Google Scholar 

  • Lahti, K., Rapala, J., Kivimäki, A.-L., Kukkonen, J., Niemelä, M., & Sivonen, K. (2001). Occurrence of microcystins in raw water sources and treated drinking water of Finnish waterworks. Water Science and Technology, 43, 225–228. https://doi.org/10.2166/wst.2001.0744

    Article  CAS  Google Scholar 

  • Li, Y., Chen, J., Zhao, Q., Pu, C., Qiu, Z., Zhang, R., & Shu, W. (2011). A cross-sectional investigation of chronic exposure to microcystin in relationship to childhood liver damage in the Three Gorges Reservoir Region. China. Environ. Health Perspect., 119, 1483–1488. https://doi.org/10.1289/ehp.1002412

    Article  CAS  Google Scholar 

  • Massey, I. Y., Al osman, M., & Yang, F. (2020). An overview on cyanobacterial blooms and toxins production: Their occurrence and influencing factors. Toxin Review, 1–21. https://doi.org/10.1080/15569543.2020.1843060

  • Menezes, C., Churro, C., & Dias, E. (2017). Risk levels of toxic cyanobacteria in Portuguese recreational freshwaters. Toxins (basel)., 9, 327. https://doi.org/10.3390/toxins9100327

    Article  CAS  Google Scholar 

  • Merel, S., David, W., Chicana, R., Snyder, S., Baurès, E., & Thomas, O. (2013a). State of knowledge and concerns on cyanobacterial blooms. Environment International, 59, 303–327.

    Article  CAS  Google Scholar 

  • Merel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E., & Thomas, O. (2013b). State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment International, 59, 303–327. https://doi.org/10.1016/j.envint.2013.06.013

    Article  CAS  Google Scholar 

  • Mkhonto, S., Ewerts, H., Swanepoel, A., & Snow, G. C. (2020). The efficacy of a recovered wash water plant in removing cyanobacteria cells and associated organic compounds. Water Supply. https://doi.org/10.2166/ws.2020.086

    Article  Google Scholar 

  • Mokoena, M. M., Mukhola, M. S., & Oknonkwo, O. J. (2016). Hazard assessment of microcystins from the household’s drinking water.  Applied Ecology and Environmental Research, 14, 695–710. https://doi.org/10.15666/aeer/1403_695710

  • Morón-lópez, J., Nieto-reyes, L., & El-shehawy, R. (2017). Assessment of the influence of key abiotic factors on the alternative microcystin degradation pathway (s) (mlr): A detailed comparison with the mlr route (mlr+). Science of the Total Environment, 599–600, 1945–1953. https://doi.org/10.1016/j.scitotenv.2017.04.042

    Article  CAS  Google Scholar 

  • Moschini-Carlos, V., Bortoli, S., Pinto, E., Nishimura, P. Y., Gomes de Freitas, L., Pompêo, M. L., & Dörr, F. (2009). Cyanobacteria and cyanotoxins in the Billings Reservoir (São Paulo, SP, Brazil). Limnetica, 28, 273–282. https://doi.org/10.23818/limn.28.23

  • Moura, A. do N., Aragão-Tavares, N. K. C., & Amorim, C. A. (2017). Cyanobacterial blooms in freshwaters bodies in a semiarid region, northeastern Brazil: A review. Journal of Limnology77. https://doi.org/10.4081/jlimnol.2017.1646

  • Munoz, M., Cirés, S., de Pedro, Z. M., Colina, J. Á., Velásquez-Figueroa, Y., Carmona-Jiménez, J., Caro-Borrero, A., Salazar, A., Santa María Fuster, M.-C., Contreras, D., Perona, E., Quesada, A., & Casas, J. A. (2020). Overview of toxic cyanobacteria and cyanotoxins in Ibero-American freshwaters: Challenges for risk management and opportunities for removal by advanced technologies. Science of the Total Environment, 143197. https://doi.org/10.1016/j.scitotenv.2020.143197

  • Newcombe, G., Ho, L., & Neto, J. C. (2021). Controlling cyanotoxin occurrence: Drinking-water treatment. In Toxic Cyanobacteria in Water, (pp. 591–639). CRC Press. https://doi.org/10.1201/9781003081449

  • Obotey Ezugbe, E., & Rathilal, S. (2020). Membrane technologies in wastewater treatment: A review. Membranes (basel)., 10, 89. https://doi.org/10.3390/membranes10050089

    Article  CAS  Google Scholar 

  • Oliver, S. L., & Ribeiro, H. (2016). Water supply, climate change and health risk factors: Example case of São Paulo—Brazil, 433–447. https://doi.org/10.1007/978-3-319-24660-4_25

  • Palmer, M. A., Filoso, S., & Fanelli, R. M. (2014). From ecosystems to ecosystem services: Stream restoration as ecological engineering. Ecological Engineering, 65, 62–70. https://doi.org/10.1016/j.ecoleng.2013.07.059

    Article  Google Scholar 

  • Park, J., Kang, J., Jung, S., Choi, J., Lee, S., Yargeau, V., & Kim, S. (2020). Investigating microcystin-LR adsorption mechanisms on mesoporous carbon, mesoporous silica, and their amino-functionalized form: Surface chemistry, pore structures, and molecular characteristics. Chemosphere, 246. https://doi.org/10.1016/j.chemosphere.2020.125811

  • Pietsch, J., Bornmann, K., & Schmidt, W. (2002). Relevance of intra- and extracellular cyanotoxins for drinking water treatment paper presented in parts as a lecture at the annual meeting of the Water Chemical Society — A division of the German Chemical Society (Wasserchemische Gesellschaft — Fachgruppe. Acta Hydrochimica Et Hydrobiologica, 30, 7. https://doi.org/10.1002/1521-401X(200207)30:1%3c7::AID-AHEH7%3e3.0.CO;2-W

    Article  CAS  Google Scholar 

  • Popkin, B. M., D’Anci, K. E., & Rosenberg, I. H. (2010). Water, hydration, and health. Nutrition Reviews, 68, 439–458. https://doi.org/10.1111/j.1753-4887.2010.00304.x

    Article  Google Scholar 

  • Pouria, S., de Andrade, A., Barbosa, J., Cavalcanti, R., Barreto, V., Ward, C., Preiser, W., Poon, G. K., Neild, G., & Codd, G. (1998). Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet, 352, 21–26. https://doi.org/10.1016/S0140-6736(97)12285-1

    Article  CAS  Google Scholar 

  • Rastogi, R. P., Madamwar, D., & Incharoensakdi, A. (2015). Bloom dynamics of cyanobacteria and their toxins: Environmental health impacts and mitigation strategies. Frontiers in Microbiology, 6, 1–22. https://doi.org/10.3389/fmicb.2015.01254

    Article  Google Scholar 

  • SABESP. (2019a). Companhia de Saneamento Básico do Estado de São Paulo [WWW Document]. http://site.sabesp.com.br/site/Default.aspx. Accessed 28 May 2019.

  • SABESP. (2019b). Formulário de Referência 2019b. São Paulo.

  • São Paulo (2016). istema Integrado de Gerenciamento de Recursos Hídricos do Estado de São Paulo - SigRH [WWW Document]. Revisão e Atualização do Plano Bacia da UGRHI 02 - Paraíba do Sul. http://www.sigrh.sp.gov.br/public/uploads/documents/CBH-PS/14089/sintese-do-plano-de-bacia-ugrhi_02-01-08-17-completo.pdf. Accessed 4 June 2019.

  • Sarkar, S., Kimono, D., Albadrani, M., Seth, R. K., Busbee, P., Alghetaa, H., Porter, D. E., Scott, G. I., Brooks, B., Nagarkatti, M., Nagarkatti, P., & Chatterjee, S. (2019). Environmental microcystin targets the microbiome and increases the risk of intestinal inflammatory pathology via NOX2 in underlying murine model of Nonalcoholic Fatty Liver Disease. Science and Reports, 9, 8742. https://doi.org/10.1038/s41598-019-45009-1

    Article  CAS  Google Scholar 

  • Schreidah, C. M., Ratnayake, K., Senarath, K., & Karunarathne, A. (2020). Microcystins: Biogenesis, toxicity, analysis, and control. Chemical Research in Toxicology, 33, 2225–2246. https://doi.org/10.1021/acs.chemrestox.0c00164

    Article  CAS  Google Scholar 

  • Şengül, A. B., Ersan, G., & Tüfekçi, N. (2018). Removal of intra- and extracellular microcystin by submerged ultrafiltration (UF) membrane combined with coagulation/flocculation and powdered activated carbon (PAC) adsorption. Journal of Hazardous Materials, 343, 29–35. https://doi.org/10.1016/j.jhazmat.2017.09.018

    Article  CAS  Google Scholar 

  • Sha, J., **ong, H., Li, C., Lu, Z., Zhang, J., Zhong, H., Zhang, W., & Yan, B. (2021). Harmful algal blooms and their eco-environmental indication. Chemosphere, 274, 129912. https://doi.org/10.1016/j.chemosphere.2021.129912

    Article  CAS  Google Scholar 

  • Shang, L., Feng, M., Xu, X., Liu, F., Ke, F., & Li, W. (2018). Co-occurrence of microcystins and taste-and-odor compounds in drinking water source and their removal in a full-scale drinking water treatment plant. Toxins (basel)., 10, 1–17. https://doi.org/10.3390/toxins10010026

    Article  CAS  Google Scholar 

  • Sonobe, H. G., Lamparelli, M. C., & Cunha, D. G. F. (2019). Avaliação espacial e temporal de aspectos sanitários de reservatórios com captação de água para abastecimento em SP com ênfase em cianobactérias e cianotoxinas. Eng. Sanit. e Ambient., 24, 909–918. https://doi.org/10.1590/s1413-41522019193351

    Article  Google Scholar 

  • Sotero-Santos, R. B., Silva, C. R. D. S. E., Verani, N. F., Nonaka, K. O., & Rocha, O. (2006). Toxicity of a cyanobacteria bloom in Barra Bonita Reservoir (Middle Tietê River, São Paulo, Brazil). Ecotoxicology and Environmental Safety, 64, 163–170. https://doi.org/10.1016/j.ecoenv.2005.03.011

    Article  CAS  Google Scholar 

  • Spoof, L., & Catherine, A. (2017). Appendix 3: Tables of microcystins and nodularins. In Handbook of cyanobacterial monitoring and cyanotoxin analysis, (pp. 526–537). John Wiley & Sons, Ltd, Chichester, UK. https://doi.org/10.1002/9781119068761.app3

  • Svirčev, Z., Lalić, D., Bojadžija Savić, G., Tokodi, N., Drobac Backović, D., Chen, L., Meriluoto, J., & Codd, G. A. (2019). Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Archives of Toxicology, 93, 2429–2481. https://doi.org/10.1007/s00204-019-02524-4

    Article  CAS  Google Scholar 

  • Swanepoel, A., Du Preez, H., & Cloete, N. (2017). The occurrence and removal of algae (including cyanobacteria) and their related organic compounds from source water in Vaalkop Dam with conventional and advanced drinking water treatment processes. Water SA, 43, 67. https://doi.org/10.4314/wsa.v43i1.10

    Article  CAS  Google Scholar 

  • Szlag, D., Sinclair, J., Southwell, B., & Westrick, J. (2015). Cyanobacteria and cyanotoxins occurrence and removal from five high-risk conventional treatment drinking water plants. Toxins (basel)., 7, 2198–2220. https://doi.org/10.3390/toxins7062198

    Article  CAS  Google Scholar 

  • Tamele, I. J., & Vasconcelos, V. (2020). Microcystin incidence in the drinking water of Mozambique: Challenges for public health protection. Toxins (basel)., 12, 368. https://doi.org/10.3390/toxins12060368

    Article  CAS  Google Scholar 

  • Teixeira, M. R., & Rosa, M. J. (2006). Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa. Separation and Purification Technology, 52, 84–94. https://doi.org/10.1016/j.seppur.2006.03.017

    Article  CAS  Google Scholar 

  • Teixeira, M. R., Rosa, M. J., Sorlini, S., Biasibetti, M., Christophoridis, C., & Edwards, C. (2020). Removal of cyanobacteria and cyanotoxins by conventional physical-chemical treatment. In Water treatment for purification from cyanobacteria and cyanotoxins, (pp. 69–97). Wiley. https://doi.org/10.1002/9781118928677.ch3

  • Turner, P. C., Gammie, A. J., Hollinrake, K., & Codd, G. A. (1990). Pneumonia associated with contact with cyanobacteria. BMJ, 300, 1440–1441. https://doi.org/10.1136/bmj.300.6737.1440

    Article  CAS  Google Scholar 

  • Uche, A. U., Edward, A. M., & Bahram, G. (2017). Risk assessment of cyanobacteria-toxins for small drinking water treatment plants with lake water intakes. International Journal of Water Resource and Environmental Engineering, 9, 121–126. https://doi.org/10.5897/IJWREE2016.0669.

    Article  Google Scholar 

  • USEPA. (2019a). Recommended human health recreational ambient water quality criteria or swimming advisories for microcystins and cylindrospermopsin documents. Washington, DC.

  • USEPA. (2019b). Cyanobacteria and cyanotoxins: Information for drinking water systems.

  • USEPA. (2018). Edition of the drinking water standards and health advisories tables. U.S. Environmental Protection Agency, Washington, DC.

  • USEPA. (2015a). Health effects support document for the cyanobacterial toxin microcystins. United States Environmental Protection Agency.

    Google Scholar 

  • USEPA. (2015b). Drinking water health advisory for the cyanobacterial microcystin toxins. U.S. Evironmental Protection Agency, 75. https://doi.org/10.1590/S1980-57642009DN30100010

  • USEPA. (2015c). ProUCL 5.1.

  • USEPA. (2015d). ProUCL Version 5.1 - User guide: Statistical software for environmental applications for data sets with and without nondetect observations. Washington, DC.

  • USEPA. (2014). National Air Toxics Assessment, NATA Glossary of Terms.

  • USEPA. (2012). Environmental Technology Verification Program.

  • USEPA. (2002). Child-specific exposure factors handbook, Interim report, EPA-600-P-. ed. United States Environmental Protection Agency, Washington, DC.

  • Villars, K., Huang, Y., & Lenhart, J. J. (2020). Removal of the cyanotoxin microcystin-LR from drinking water using granular activated carbon. Environmental Engineering Science37(9), 585–595. https://doi.org/10.1089/ees.2020.0017

  • Vu, H. P., Nguyen, L. N., Zdarta, J., Nga, T. T. V., & Nghiem, L. D. (2020). Blue-green algae in surface water: Problems and opportunities. Current Pollution Reports, 6, 105–122. https://doi.org/10.1007/s40726-020-00140-w.

    Article  Google Scholar 

  • Walter, J. M., Lopes, F. A. C., Lopes-Ferreira, M., Vidal, L. M., Leomil, L., Melo, F., de Azevedo, G. S., Oliveira, R. M. S., Medeiros, A. J., Melo, A. S. O., De Rezende, C. E., Tanuri, A., & Thompson, F. L. (2018). Occurrence of harmful cyanobacteria in drinking water from a severely drought-impacted semi-arid region. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00176

  • Wang, H., Xu, C., Liu, Y., Jeppesen, E., Svenning, J.-C., Wu, J., Zhang, W., Zhou, T., Wang, P., Nangombe, S., Ma, J., Duan, H., Fang, J., & **e, P. (2021). From unusual suspect to serial killer: Cyanotoxins boosted by climate change may jeopardize African megafauna. The Innovation, 100092. https://doi.org/10.1016/j.xinn.2021.100092

  • Weber, S. J., Mishra, D. R., Wilde, S. B., & Kramer, E. (2020). Risks for cyanobacterial harmful algal blooms due to land management and climate interactions. Science of the Total Environment, 703, 134608. https://doi.org/10.1016/j.scitotenv.2019.134608

    Article  CAS  Google Scholar 

  • Weir, M. H., Wood, T. A., & Zimmer-Faust, A. (2020). Development of methods to estimate microcystins removal and water treatment resiliency using mechanistic risk modelling. Water Research, 116763. https://doi.org/10.1016/j.watres.2020.116763

  • Weirich, C. A., & Miller, T. R. (2014). Freshwater harmful algal blooms: Toxins and children’s health. Current Problems in Pediatric and Adolescent Health Care, 44, 2–24. https://doi.org/10.1016/j.cppeds.2013.10.007

    Article  Google Scholar 

  • WHO. (2017). Guidelines for drinking water quality: Fourth edition incorporating the first addendum. World Health Organization.

  • WHO. (2015). Management of cyanobacteria in drinking water supplies: Information for regulators and water suppliers. Switz.

    Google Scholar 

  • WHO. (2009). Water safety plan manual. World Health Organization.

    Google Scholar 

  • WHO. (2003). Cyanobacterial toxins: Microcystin-LR in drinking-water, In Background document for development of WHO guidelines for drinking-water quality, (p. 18). World Health Organization Geneva, Switzerland.

  • Yeager, N., & Carpenter, A. (2019). State approaches to addressing cyanotoxins in drinking water. AWWA Water Science, 1, e1121.

  • Yi, X., Xu, S., Huang, F., Wen, C., Zheng, S., Feng, H., Guo, J., Chen, J., Feng, X., & Yang, F. (2019). Effects of chronic exposure to microcystin-LR on kidney in mice. International Journal of Environmental Research and Public Health, 16, 5030. https://doi.org/10.3390/ijerph16245030

    Article  CAS  Google Scholar 

  • Zamyadi, A., Fan, Y., Daly, R. I., & Prévost, M. (2013). Chlorination of Microcystis aeruginosa: Toxin release and oxidation, cellular chlorine demand and disinfection by-products formation. Water Research, 47, 1080–1090. https://doi.org/10.1016/j.watres.2012.11.031

    Article  CAS  Google Scholar 

  • Zamyadi, A., MacLeod, S. L., Fan, Y., McQuaid, N., Dorner, S., Sauvé, S., & Prévost, M. (2012). Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: A monitoring and treatment challenge. Water Research, 46, 1511–1523. https://doi.org/10.1016/j.watres.2011.11.012

    Article  CAS  Google Scholar 

  • Zhang, D., **e, P., & Chen, J. (2010). Effects of temperature on the stability of microcystins in muscle of fish and its consequences for food safety. Bulletin of Environment Contamination and Toxicology, 84, 202–207. https://doi.org/10.1007/s00128-009-9910-6

    Article  CAS  Google Scholar 

  • Zhang, H., Zhu, G., Jia, X., Ding, Y., Zhang, M., Gao, Q., Hu, C., & Xu, S. (2011). Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan. Journal of Environmental Sciences, 23, 1983–1988. https://doi.org/10.1016/S1001-0742(10)60676-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship to JF Malta and for the funding to DGF Cunha (PROEX/PPGSHS/EESC/USP). The authors also thank Murilo de Souza Ferreira for the help with the maps on the Arcgis®.

Funding

CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) funded this research (Grants #300899/2016-5 and #406855/2016–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davi Gasparini Fernandes Cunha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malta, J.F., Nardocci, A.C., Razzolini, M.T.P. et al. Exposure to microcystin-LR in tropical reservoirs for water supply poses high risks for children and adults. Environ Monit Assess 194, 253 (2022). https://doi.org/10.1007/s10661-022-09875-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09875-z

Keywords

Navigation