Log in

Determination and assessment of elemental concentration in the atmospheric particulate matter: a comprehensive review

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The elemental concentrations of atmospheric particulate matter (PM) have a detrimental effect on human health in which some elemental species have carcinogenic nature. In India, significant variations have found in the practices adapted from sampling to analysis for the determination and assessment of the elemental concentration in PM. Therefore, Indian studies (2011–2020) on the related domain are summarized to impart consistency in the field and laboratory practices. Further, a comparative analysis with other countries has also been mentioned in the relevant sections to evaluate its likeness with Indian studies. To prepare this study, literature has been procured from reputed journals. Subsequently, each step from sampling to analysis has thoroughly discussed with quality assurance and control (QA/QC) compliance. In addition, a framework has been proposed that showed field and laboratory analysis in an organized manner. Consequently, this study will provide benefit to novice researcher and improve their understanding about the related subject. Also, it will assist other peoples/bodies in framing the necessary decisions to carry out this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Source profile matrix (Normalization through each source category) based on number of literature (in %)

Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Agarwal, A., Mangal, A., Satsangi, A., Lakhani, A., & Maharaj Kumari, K. (2017). Characterization, sources and health risk analysis of PM2.5 bound metals during foggy and non-foggy days in sub-urban atmosphere of Agra. Atmospheric Research, 197, 121–131. https://doi.org/10.1016/j.atmosres.2017.06.027

    Article  CAS  Google Scholar 

  • Aggarwal, S. G., Kumar, S., Mandal, P., Sarangi, B., Singh, K., Pokhariyal, J., Mishra, S. K., Agarwal, S., Sinha, D., Singh, S., Sharma, C., & Gupta, P. K. (2013). Traceability Issue in PM2.5 and PM10 Measurements. Mapan - Journal of Metrology Society of India, 28(3), 153–166. https://doi.org/10.1007/s12647-013-0073-x

  • Amado, C. M., Minahk, C. J., Cilli, E., Oliveira, G., & Dupuy, F. G. (2019). Atmospheric particulate matters in an Indian urban area: health implications from potentially hazardous elements, cytotoxicity, and genotoxicity studies. Journal of Hazardous Materials, 183135. https://doi.org/10.1016/j.bbamem.2019.183135

  • ASTM. (1996). Standard guide for choosing locations and sampling methods to monitor atmospheric deposition at non–urban locations: D 5111. West Conshohocken, PA.

  • Banerjee, T., Murari, V., Kumar, M., & Raju, M. P. (2015). Source apportionment of airborne particulates through receptor modeling: Indian scenario. Atmospheric Research, 164–165, 167–187. https://doi.org/10.1016/j.atmosres.2015.04.017

    Article  CAS  Google Scholar 

  • Bano, S., Pervez, S., Chow, J. C., Lal, J., Watson, J. G., Kumar, R., Srivastava, A., Tiwari, S., Fatima, Y., & Kanti, M. (2018). Coarse particle ( PM 10–2. 5) source pro fi les for emissions from domestic cooking and industrial process in Central India. Science of the Total Environment, 627, 1137–1145. https://doi.org/10.1016/j.scitotenv.2018.01.289

    Article  CAS  Google Scholar 

  • Bari, M. A., & Kindzierski, W. B. (2017). Concentrations, sources and human health risk of inhalation exposure to air toxics in Edmonton, Canada. Chemosphere, 173, 160–171. https://doi.org/10.1016/j.chemosphere.2016.12.157

    Article  CAS  Google Scholar 

  • Basha, A. M., Yasovardhan, N., Satyanarayana, S. V., Reddy, V. S., & G., & Kumar, A. V. (2014). Baseline survey of trace metals in ambient PM10 at Tummalapalle uranium mining site. Atmospheric Pollution Research, 5(4), 591–600. https://doi.org/10.5094/APR.2014.068

    Article  CAS  Google Scholar 

  • Belen Tejada-Romero, Jean-Michel Carter, Yuliana Mihaylova, B. N. and A. A., & Aboobaker. (2015). Characterization of Ambient PM2.5 at a Pollution Hotspot in New Delhi, India and Inference of Sources. Atmospheric Environment, 14(June), 1–29.

  • Bhuyan, P., Deka, P., Prakash, A., Balachandran, S., & Hoque, R. R. (2018). Chemical characterization and source apportionment of aerosol over mid Brahmaputra Valley, India. Environmental Pollution, 234, 997–1010. https://doi.org/10.1016/j.envpol.2017.12.009

    Article  CAS  Google Scholar 

  • Bikkina, S., Sarin, M. M., & Chinni, V. (2015). Atmospheric 210Pb and anthropogenic trace metals in the continental outflow to the Bay of Bengal. Atmospheric Environment, 122, 737–747. https://doi.org/10.1016/j.atmosenv.2015.10.044

    Article  CAS  Google Scholar 

  • Bindu, G., Nair, P. R., Aryasree, S., Hegde, P., & Jacob, S. (2016). Pattern of aerosol mass loading and chemical composition over the atmospheric environment of an urban coastal station. Journal of Atmospheric and Solar-Terrestrial Physics, 138–139, 121–135. https://doi.org/10.1016/j.jastp.2016.01.004

    Article  CAS  Google Scholar 

  • Bozkurt, Z., O. Gaga, E., Taşpınar, F., Arı, A., Pekey, B., Pekey, H., Döğeroğlu, T., & Özden Üzmez, Ö. (2018). Atmospheric ambient trace element concentrations of PM10 at urban and sub-urban sites: source apportionment and health risk estimation. Environmental Monitoring and Assessment, 190(3). https://doi.org/10.1007/s10661-018-6517-6

  • Bozlaker, A., Prospero, J. M., Fraser, M. P., & Chellam, S. (2013). Quantifying the contribution of long-range saharan dust transport on particulate matter concentrations in Houston, Texas, using detailed elemental analysis. Environmental Science and Technology, 47(18), 10179–10187. https://doi.org/10.1021/es4015663

    Article  CAS  Google Scholar 

  • Brokamp, C., Jandarov, R., Rao, M. B., LeMasters, G., & Ryan, P. (2017). Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmospheric Environment, 151, 1–11. https://doi.org/10.1016/j.atmosenv.2016.11.066

    Article  CAS  Google Scholar 

  • Campos-Ramos, A. A., Aragon-Pina, A., Alastuey, A., Galindo-Estrada, I., & Querol, X. (2011). Levels, composition and source apportionment of rural background PM10 in western Mexico (state of Colima). Atmospheric Pollution Research, 2(4), 409–417. https://doi.org/10.5094/APR.2011.046

    Article  CAS  Google Scholar 

  • Chaudhari, P. R., Gupta, R., Gajghate, D. G., & Wate, S. R. (2012). Heavy metal pollution of ambient air in Nagpur City. Environmental Monitoring and Assessment, 184(4), 2487–2496. https://doi.org/10.1007/s10661-011-2133-4

    Article  CAS  Google Scholar 

  • Chen, Y., Schleicher, N., Cen, K., Liu, X., Yu, Y., Zibat, V., Dietze, V., Fricker, M., Kaminski, U., Chen, Y., Chai, F., & Norra, S. (2016). Evaluation of impact factors on PM2.5 based on long-term chemical components analyses in the megacity Bei**g. China. Chemosphere, 155, 234–242. https://doi.org/10.1016/j.chemosphere.2016.04.052

    Article  CAS  Google Scholar 

  • Chenery, S. R. N., Sarkar, S. K., Chatterjee, M., Marriott, A. L., & Watts, M. J. (2020). Heavy metals in urban road dusts from Kolkata and Bengaluru, India: implications for human health. Environmental Geochemistry and Health, 4. https://doi.org/10.1007/s10653-019-00467-4

  • Chifflet, S., Amouroux, D., Bérail, S., Barre, J., Van, T. C., Baltrons, O., Brune, J., Dufour, A., Guinot, B., & Mari, X. (2018). Origins and discrimination between local and regional atmospheric pollution in Haiphong (Vietnam), based on metal(loid) concentrations and lead isotopic ratios in PM10. Environmental Science and Pollution Research, 25(26), 26653–26668. https://doi.org/10.1007/s11356-018-2722-7

    Article  CAS  Google Scholar 

  • Chithra, V. S., & Shiva Nagendra, S. M. (2013). Chemical and morphological characteristics of indoor and outdoor particulate matter in an urban environment. Atmospheric Environment, 77, 579–587. https://doi.org/10.1016/j.atmosenv.2013.05.044

    Article  CAS  Google Scholar 

  • Clements, A. L., Fraser, M. P., Upadhyay, N., Herckes, P., Sundblom, M., Lantz, J., & Solomon, P. A. (2017). Source identification of coarse particles in the Desert Southwest, USA using Positive Matrix Factorization. Atmospheric Pollution Research, 8(5), 873–884. https://doi.org/10.1016/j.apr.2017.02.003

    Article  Google Scholar 

  • Colombi, C., Angius, S., Gianelle, V., & Lazzarini, M. (2013). Particulate matter concentrations, Physical characteristics and elemental composition in the Milan underground transport system. Atmospheric Environment, 70, 166–178. https://doi.org/10.1016/j.atmosenv.2013.01.035

    Article  CAS  Google Scholar 

  • Cui, L., Wu, Z., Han, P., Taira, Y., Wang, H., Meng, Q., Feng, Z., Zhai, S., Yu, J., Zhu, W., Kong, Y., Wang, H., Zhang, H., Bai, B., Lou, Y., & Ma, Y. (2020). Chemical content and source apportionment of 36 heavy metal analysis and health risk assessment in aerosol of Bei**g. Environmental Science and Pollution Research, 27(7), 7005–7014. https://doi.org/10.1007/s11356-019-06427-w

    Article  CAS  Google Scholar 

  • Cusack, M., Arrieta, J. M., & Duarte, C. M. (2020). Source Apportionment and Elemental Composition of Atmospheric Total Suspended Particulates (TSP) Over the Red Sea Coast of Saudi Arabia. Earth Systems and Environment, 4(4), 777–788. https://doi.org/10.1007/s41748-020-00189-z

    Article  Google Scholar 

  • Das, R., Khezri, B., Srivastava, B., Datta, S., Sikdar, P. K., Webster, R. D., & Wang, X. (2015). Trace element composition of PM2.5 and PM10 from kolkata–a heavily polluted indian metropolis. Atmospheric Pollution Research, 6(5), 742–750. https://doi.org/10.5094/APR.2015.083

  • Deka, P., & Hoque, R. R. (2014). Incremental effect of festive biomass burning on wintertime PM10 in Brahmaputra Valley of Northeast India. Atmospheric Research, 143, 380–391. https://doi.org/10.1016/j.atmosres.2014.03.003

    Article  CAS  Google Scholar 

  • Devi, G., Devi, A., & Bhattacharyya, K. G. (2016). Hydrocarbons and heavy metals in fine particulates in oil field air: Possible impacts on production of natural silk. Environmental Science and Pollution Research, 23(4), 3310–3321. https://doi.org/10.1007/s11356-015-5533-0

    Article  CAS  Google Scholar 

  • Dubey, B., Pal, A. K., & Singh, G. (2012). Trace metal composition of airborne particulate matter in the coal mining and non–mining areas of Dhanbad Region, Jharkhand. India. Atmospheric Pollution Research, 3(2), 238–246. https://doi.org/10.5094/APR.2012.026

    Article  CAS  Google Scholar 

  • Ee-Ling, O., Mustaffa, N. I. H., Amil, N., Khan, M. F., & Latif, M. T. (2015). Source contribution of PM2.5 at different locations on the Malaysian peninsula. Bulletin of Environmental Contamination and Toxicology, 94(4), 537–542. https://doi.org/10.1007/s00128-015-1477-9

  • EzhilKumar, M. R., Karthikeyan, S., Chianese, E., Tirimberio, G., Di Gilio, A., Palmisani, J., Miniero, V. D., Cotugno, P., & Riccio, A. (2020). Vertical transport of PM2.5 and PM10 and its source identification in the street canyons of Chennai metropolitan city, India. Atmospheric Pollution Research, August, 0–1. https://doi.org/10.1016/j.apr.2020.08.032

  • Gajghate, D. G., Khaparde, V. V., Pustode, T. M., Pipalatkar, P. P., & Rao, C. V. C. (2011). Uncertainty estimation in analysis of particulate-bound mercury in different size fractions of PM10 in ambient air. Accreditation and Quality Assurance, 16(8), 459–465. https://doi.org/10.1007/s00769-011-0785-y

    Article  CAS  Google Scholar 

  • Galindo, N., Yubero, E., Nicolás, J. F., Varea, M., & Crespo, J. (2018). Characterization of metals in PM1 and PM10 and health risk evaluation at an urban site in the western Mediterranean. Chemosphere, 201, 243–250. https://doi.org/10.1016/j.chemosphere.2018.02.162

    Article  CAS  Google Scholar 

  • Galvão, E. S., Santos, J. M., Lima, A. T., Reis, N. C., Orlando, M. T. D. A., & Stuetz, R. M. (2018). Review: Trends in analytical techniques applied to particulate matter characterization: A critical review of fundaments and applications. In Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.02.034

    Article  Google Scholar 

  • Garaga, R., Gokhale, S., & Kota, S. H. (2020). Source apportionment of size-segregated atmospheric particles and the influence of particles deposition in the human respiratory tract in rural and urban locations of north-east India. In Chemosphere (Vol. 255). https://doi.org/10.1016/j.chemosphere.2020.126980

  • Gargava, P., Chow, J. C., Watson, J. G., & Lowenthal, D. H. (2014). Speciated PM10 emission inventory for Delhi. India. Aerosol and Air Quality Research, 14(5), 1515–1526. https://doi.org/10.4209/aaqr.2013.02.0047

    Article  CAS  Google Scholar 

  • Gargiulo, J. D., Kumar, R. S., Chaparro, M. A. E., Chaparro, M. A. E., Natal, M., & Rajkumar, P. (2016). Magnetic properties of air suspended particles in thirty eight cities from south India. Atmospheric Pollution Research, 7(4), 626–637. https://doi.org/10.1016/j.apr.2016.02.008

    Article  Google Scholar 

  • Gholampour, A., Nabizadeh, R., Hassanvand, M. S., Taghipour, H., Rafiee, M., Alizadeh, Z., Faridi, S., & Mahvi, A. H. (2016). Characterization and source identification of trace elements in airborne particulates at urban and suburban atmospheres of Tabriz. Iran. Environmental Science and Pollution Research, 23(2), 1703–1713. https://doi.org/10.1007/s11356-015-5413-7

    Article  CAS  Google Scholar 

  • Ghosh, S., Gupta, T., Rastogi, N., Gaur, A., Misra, A., Tripathi, S. N., Paul, D., Tare, V., Prakash, O., Bhattu, D., Dwivedi, A. K., Kaul, D. S., Dalai, R., & Mishra, S. K. (2014). Chemical characterization of summertime dust events at Kanpur: Insight into the sources and level of mixing with anthropogenic emissions. Aerosol and Air Quality Research, 14(3), 879–891. https://doi.org/10.4209/aaqr.2013.07.0240

    Article  CAS  Google Scholar 

  • Ghosh, S., Rabha, R., Chowdhury, M., & Padhy, P. K. (2018). Source and chemical species characterization of PM10 and human health risk assessment of semi-urban, urban and industrial areas of West Bengal, India. Chemosphere, 207, 626–636. https://doi.org/10.1016/j.chemosphere.2018.05.133

    Article  CAS  Google Scholar 

  • Gonçalves, C., Figueiredo, B. R., Alves, C. A., Cardoso, A. A., & Vicente, A. M. (2017). Size-segregated aerosol chemical composition from an agro-industrial region of São Paulo state, Brazil. Air Quality, Atmosphere and Health, 10(4), 483–496. https://doi.org/10.1007/s11869-016-0441-0

    Article  CAS  Google Scholar 

  • González-Castanedo, Y., Sanchez-Rodas, D., Sánchez de la Campa, A. M., Pandolfi, M., Alastuey, A., Cachorro, V. E., Querol, X., & de la Rosa, J. D. (2015). Arsenic species in atmospheric particulate matter as tracer of the air quality of Doñana Natural Park (SW Spain). Chemosphere, 119, 1296–1303. https://doi.org/10.1016/j.chemosphere.2014.09.093

    Article  CAS  Google Scholar 

  • Gummeneni, S., Yusup, Y. B., Chavali, M., & Samadi, S. Z. (2011). Source apportionment of particulate matter in the ambient air of Hyderabad city. India. Atmospheric Research, 101(3), 752–764. https://doi.org/10.1016/j.atmosres.2011.05.002

    Article  CAS  Google Scholar 

  • Gupta, P., Satsangi, M., Satsangi, G. P., Jangid, A., Liu, Y., Pani, S. K., & Kumar, R. (2019). Exposure to respirable and fine dust particle over North-Central India: chemical characterization, source interpretation, and health risk analysis. Environmental Geochemistry and Health, 0123456789. https://doi.org/10.1007/s10653-019-00461-w

  • Gupta, T., & Mandariya, A. (2013). Sources of submicron aerosol during fog-dominated wintertime at Kanpur. Environmental Science and Pollution Research, 20(8), 5615–5629. https://doi.org/10.1007/s11356-013-1580-6

    Article  CAS  Google Scholar 

  • Guttikunda, S. K., Kopakka, R. V., Dasari, P., & Gertler, A. W. (2013). Receptor model-based source apportionment of particulate pollution in Hyderabad. India. Environmental Monitoring and Assessment, 185(7), 5585–5593. https://doi.org/10.1007/s10661-012-2969-2

    Article  CAS  Google Scholar 

  • Hazarika, N., Srivastava, A., & Das, A. (2017). Quantification of particle bound metallic load and PAHs in urban environment of Delhi, India: Source and toxicity assessment. Sustainable Cities and Society, 29, 58–67. https://doi.org/10.1016/j.scs.2016.11.010

    Article  Google Scholar 

  • Herrera Murillo, J., Rodriguez Roman, S., Rojas Marin, J. F., Campos Ramos, A., Blanco Jimenez, S., Cardenas Gonzalez, B., & Gibson Baumgardner, D. (2013). Chemical characterization and source apportionment of PM10 and PM2.5 in the metropolitan area of Costa Rica, Central America. Atmospheric Pollution Research, 4(2), 181–190. https://doi.org/10.5094/APR.2013.018

  • Huang, Y., Wang, L., Zhang, S., Zhang, M., Wang, J., Cheng, X., Li, T., He, M., & Ni, S. (2020). Source apportionment and health risk assessment of air pollution particles in eastern district of Chengdu. Environmental Geochemistry and Health, 42(7), 2251–2263. https://doi.org/10.1007/s10653-019-00495-0

    Article  CAS  Google Scholar 

  • Jain, S., Sharma, S. K., Srivastava, M. K., Chaterjee, A., Singh, R. K., Saxena, M., & Mandal, T. K. (2019). Source Apportionment of PM 10 Over Three Tropical Urban Atmospheres at Indo-Gangetic Plain of India: An Approach Using Different Receptor Models. Archives of Environmental Contamination and Toxicology, 76(1), 114–128. https://doi.org/10.1007/s00244-018-0572-4

    Article  CAS  Google Scholar 

  • Jain, S., Sharma, S. K., Vijayan, N., & Mandal, T. K. (2020). Seasonal characteristics of aerosols (PM2.5 and PM10) and their source apportionment using PMF: A four year study over Delhi, India. Environmental Pollution.

  • Jaiprakash, & Habib, G. (2017). Chemical and optical properties of PM2.5 from on-road operation of light duty vehicles in Delhi city. Science of the Total Environment, 586, 900–916. https://doi.org/10.1016/j.scitotenv.2017.02.070

    Article  CAS  Google Scholar 

  • Jan, R., Roy, R., Yadav, S., & Satsangi, P. G. (2018). Chemical fractionation and health risk assessment of particulate matter-bound metals in Pune. India. Environmental Geochemistry and Health, 40(1), 255–270. https://doi.org/10.1007/s10653-016-9900-7

    Article  CAS  Google Scholar 

  • Jena, S., Perwez, A., & Singh, G. (2019). Trace element characterization of fine particulate matter and assessment of associated health risk in mining area, transportation routes and institutional area of Dhanbad. India. Environmental Geochemistry and Health, 41(6), 2731–2747. https://doi.org/10.1007/s10653-019-00329-z

    Article  CAS  Google Scholar 

  • Jena, S., & Singh, G. (2017). Human health risk assessment of airborne trace elements in Dhanbad. India. Atmospheric Pollution Research, 8(3), 490–502. https://doi.org/10.1016/j.apr.2016.12.003

    Article  Google Scholar 

  • Jose, J., & Srimuruganandam, B. (2020). Investigation of road dust characteristics and its associated health risks from an urban environment. Environmental Geochemistry and Health, 6. https://doi.org/10.1007/s10653-020-00521-6

  • Joseph, A. E., Unnikrishnan, S., & Kumar, R. (2012). Chemical characterization and mass closure of fine aerosol for different land use patterns in Mumbai city. Aerosol and Air Quality Research, 12(1), 61–72. https://doi.org/10.4209/aaqr.2011.04.0049

    Article  CAS  Google Scholar 

  • Joshi, M., Nakhwa, A., Khandare, P., Khan, A., & Mariam, & Sapra, B. K. (2019). Simultaneous measurements of mass, chemical compositional and number characteristics of aerosol particles emitted during fireworks. Atmospheric Environment, 217(August), 116925. https://doi.org/10.1016/j.atmosenv.2019.116925

    Article  CAS  Google Scholar 

  • Kalaiarasan, G., Balakrishnan, R. M., & Khaparde, V. V. (2016). Receptor model based source apportionment of PM10 in the metropolitan and industrialized areas of Mangalore. Environmental Technology and Innovation, 6, 195–203. https://doi.org/10.1016/j.eti.2016.10.002

    Article  Google Scholar 

  • Kalaiarasan, G., Balakrishnan, R. M., Sethunath, N. A., & Manoharan, S. (2017). Source apportionment of PM2.5 particles: Influence of outdoor particles on indoor environment of schools using chemical mass balance. Aerosol and Air Quality Research, 17(2), 616–625. https://doi.org/10.4209/aaqr.2016.07.0297

  • Karnae, S., & John, K. (2019). Source apportionment of PM2.5 measured in South Texas near U.S.A. – Mexico border. Atmospheric Pollution Research, 10(5), 1663–1676. https://doi.org/10.1016/j.apr.2019.06.007

  • Kavuri, N. C., Paul, K. K., & Roy, N. (2015). TSP aerosol source apportionment in the urban region of the Indian steel city, Rourkela. Particuology, 20, 124–133. https://doi.org/10.1016/j.partic.2014.07.006

    Article  Google Scholar 

  • Khillare, P. S., & Sarkar, S. (2012). Airborne inhalable metals in residential areas of Delhi, India: Distribution, source apportionment and health risks. Atmospheric Pollution Research, 3(1), 46–54. https://doi.org/10.5094/APR.2012.004

    Article  CAS  Google Scholar 

  • Khodeir, M., Shamy, M., Alghamdi, M., Zhong, M., Sun, H., Costa, M., Chen, L. C., & Maciejczyk, P. (2012). Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmospheric Pollution Research, 3(3), 331–340. https://doi.org/10.5094/APR.2012.037

  • Kothai, P., Saradhi, I. V., Pandit, G. G., Markwitz, A., & Puranik, V. D. (2011). Chemical characterization and source identification of particulate matter at an urban site of Navi Mumbai. India. Aerosol and Air Quality Research, 11(5), 560–569. https://doi.org/10.4209/aaqr.2011.02.0017

    Article  CAS  Google Scholar 

  • Kothai, P., Saradhi, I. V., Prathibha, P., Pandit, G. G., & Puranik, V. D. (2012). Concentration levels and temporal variations of heavy elements in the urban particulate matter of Navi Mumbai, India. Journal of Radioanalytical and Nuclear Chemistry, 294(3), 453–459. https://doi.org/10.1007/s10967-011-1502-3

    Article  CAS  Google Scholar 

  • Koukoulakis, K. G., Chrysohou, E., Kanellopoulos, P. G., Karavoltsos, S., Katsouras, G., Dassenakis, M., Nikolelis, D., & Bakeas, E. (2019). Trace elements bound to airborne PM10 in a heavily industrialized site nearby Athens: Seasonal patterns, emission sources, health implications. Atmospheric Pollution Research, 10(4), 1347–1356. https://doi.org/10.1016/j.apr.2019.03.007

    Article  CAS  Google Scholar 

  • Kulshrestha, A., Massey, D. D., Masih, J., & Taneja, A. (2014). Source characterization of trace elements in indoor environments at urban, rural and roadside sites in a Semi Arid Region of India. Aerosol and Air Quality Research, 14(6), 1738–1751. https://doi.org/10.4209/aaqr.2013.05.0147

    Article  CAS  Google Scholar 

  • Kumar, S. (2013). Appraisal of heavy metal concentration in selected vegetables exposed to different degrees of pollution in Agra. India. Environmental Monitoring and Assessment, 185(3), 2683–2690. https://doi.org/10.1007/s10661-012-2739-1

    Article  CAS  Google Scholar 

  • Kumar, S., Aggarwal, S. G., Sarangi, B., Malherbe, J., Barre, J. P. G., Berail, S., Séby, F., & Donard, O. F. X. (2018). Understanding the influence of open-waste burning on urban aerosols using metal tracers and lead isotopic composition. Aerosol and Air Quality Research, 18(9), 2433–2446. https://doi.org/10.4209/aaqr.2017.11.0510

    Article  CAS  Google Scholar 

  • Kumar, S., & Raman, R. S. (2020). Source apportionment of fine particulate matter over a National Park in Central India. Science of the Total Environment, 720. https://doi.org/10.1016/j.scitotenv.2020.137511

  • Kumari, A., & Kulshrestha, U. (2018). Trace ambient levels of particulate mercury and its sources at a rural site near Delhi. Journal of Atmospheric Chemistry, 75(4), 357. https://doi.org/10.1007/s10874-018-9383-2

    Article  CAS  Google Scholar 

  • Li, Y. J., Sun, Y., Zhang, Q., Li, X., Li, M., Zhou, Z., & Chan, C. K. (2017). Review: Real-time chemical characterization of atmospheric particulate matter in China. Atmospheric Environment, 158, 270–304. https://doi.org/10.1016/j.atmosenv.2017.02.027

    Article  CAS  Google Scholar 

  • Lin, C. C. (2016). Review: A review of the impact of fireworks on particulate matter in ambient air. In Journal of the Air and Waste Management Association. https://doi.org/10.1080/10962247.2016.1219280

    Article  Google Scholar 

  • Loganathan, P., Vigneswaran, S., & Kandasamy, J. (2013). Review: Road-deposited sediment pollutants: A critical review of their characteristics, source apportionment, and management. Critical Reviews in Environmental Science and Technology, 43(13), 1315–1348. https://doi.org/10.1080/10643389.2011.644222

    Article  CAS  Google Scholar 

  • Madhwal, S., Prabhu, V., Sundriyal, S., & Shridhar, V. (2020). Distribution, characterization and health risk assessment of size fractionated bioaerosols at an open landfill site in Dehradun, India. In Atmospheric Pollution Research (Vol. 11, Issue 1). Turkish National Committee for Air Pollution Research and Control. https://doi.org/10.1016/j.apr.2019.10.002

  • Mahilang, M., Deb, M. K., Nirmalkar, J., & Pervez, S. (2020). Influence of fireworks emission on aerosol aging process at lower troposphere and associated health risks in an urban region of eastern central India. Atmospheric Pollution Research, 11(7), 1127–1141. https://doi.org/10.1016/j.apr.2020.04.009

    Article  CAS  Google Scholar 

  • Malandrino, M., Casazza, M., Abollino, O., Minero, C., & Maurino, V. (2016). Size resolved metal distribution in the PM matter of the city of Turin (Italy). Chemosphere, 147, 477–489. https://doi.org/10.1016/j.chemosphere.2015.12.089

    Article  CAS  Google Scholar 

  • Malandrino, M., Di Martino, M., Giacomino, A., Geobaldo, F., Berto, S., Grosa, M. M., & Abollino, O. (2013). Temporal trends of elements in Turin (Italy) atmospheric particulate matter from 1976 to 2001. Chemosphere, 90(10), 2578–2588. https://doi.org/10.1016/j.chemosphere.2012.10.102

    Article  CAS  Google Scholar 

  • Mandal, P., Sarkar, R., Mandal, A., Patel, P., & Kamal, N. (2016). Study on Airborne Heavy Metals in Industrialized Urban Area of Delhi, India. Bulletin of Environmental Contamination and Toxicology, 97(6), 798–805. https://doi.org/10.1007/s00128-016-1944-y

    Article  CAS  Google Scholar 

  • Massey, D. D., Kulshrestha, A., & Taneja, A. (2013). Particulate matter concentrations and their related metal toxicity in rural residential environment of semi-arid region of India. Atmospheric Environment, 67, 278–286. https://doi.org/10.1016/j.atmosenv.2012.11.002

    Article  CAS  Google Scholar 

  • Matawle, J. L., Pervez, S., Deb, M. K., Shrivastava, A., & Tiwari, S. (2018). PM2.5 pollution from household solid fuel burning practices in Central India: 2. Application of receptor models for source apportionment. Environmental Geochemistry and Health, 40(1), 145–161. https://doi.org/10.1007/s10653-016-9889-y

  • Matawle, J. L., Pervez, S., Dewangan, S., Shrivastava, A., Tiwari, S., Pant, P., Deb, M. K., & Pervez, Y. (2015). Characterization of PM2.5 source profiles for traffic and dust sources in Raipur, India. Aerosol and Air Quality Research, 15(7), 2537–2548. https://doi.org/10.4209/aaqr.2015.04.0222

  • Matawle, J. L., Pervez, S., Shrivastava, A., Tiwari, S., Pant, P., Deb, M. K., Bisht, D. S., & Pervez, Y. F. (2017). PM2.5 pollution from household solid fuel burning practices in central India: 1. Impact on indoor air quality and associated health risks. Environmental Geochemistry and Health, 39(5), 1045–1058. https://doi.org/10.1007/s10653-016-9871-8

  • Meena, M., Meena, B. S., Chandrawat, U., & Rani, A. (2016). Seasonal variation of selected metals in particulate matter at an industrial city Kota. India. Aerosol and Air Quality Research, 16(4), 990–999. https://doi.org/10.4209/aaqr.2015.02.0074

    Article  CAS  Google Scholar 

  • Megido, L., Negral, L., Castrillón, L., Suárez-Peña, B., Fernández-Nava, Y., & Marañón, E. (2017). Enrichment factors to assess the anthropogenic influence on PM10 in Gijón (Spain). Environmental Science and Pollution Research, 24(1), 711–724. https://doi.org/10.1007/s11356-016-7858-8

    Article  CAS  Google Scholar 

  • Megido, L., Suárez-Peña, B., Negral, L., Castrillón, L., Suárez, S., Fernández-Nava, Y., & Marañón, E. (2016). Relationship between physico-chemical characteristics and potential toxicity of PM10. Chemosphere, 162, 73–79. https://doi.org/10.1016/j.chemosphere.2016.07.067

    Article  CAS  Google Scholar 

  • Mesías Monsalve, S., Martínez, L., Yohannessen Vásquez, K., Alvarado Orellana, S., Klarián Vergara, J., Martín Mateo, M., Costilla Salazar, R., Fuentes Alburquenque, M., & Cáceres Lillo, D. D. (2018). Trace element contents in fine particulate matter (PM2.5) in urban school microenvironments near a contaminated beach with mine tailings, Chañaral, Chile. Environmental Geochemistry and Health, 40(3), 1077–1091. https://doi.org/10.1007/s10653-017-9980-z

  • Mmari, A. G., Hassan, H. A., & Bencs, L. (2020). Daytime concentrations of minor and trace elements in atmospheric aerosols at four sampling sites of Dar es Salaam, Tanzania. Air Quality, Atmosphere and Health, 13(6), 739–750. https://doi.org/10.1007/s11869-020-00832-8

    Article  CAS  Google Scholar 

  • MOEF Ministry of Environment and Forests. (2009). Environment (protection) seventh amendment rules. New Delhi: Government of India Press.

    Google Scholar 

  • Murari, V., Kumar, M., Barman, S. C., & Banerjee, T. (2014). Temporal variability of MODIS aerosol optical depth and chemical characterization of airborne particulates in Varanasi. India. Environmental Science and Pollution Research, 22(2), 1329–1343. https://doi.org/10.1007/s11356-014-3418-2

    Article  CAS  Google Scholar 

  • Murari, V., Singh, N., Ranjan, R., Singh, R. S., & Banerjee, T. (2020). Source apportionment and health risk assessment of airborne particulates over central Indo-Gangetic Plain. Chemosphere, 257. https://doi.org/10.1016/j.chemosphere.2020.127145

  • Nghiem, T. D., Nguyen, T. T. T., Nguyen, T. T. H., Ly, B. T., Sekiguchi, K., Yamaguchi, R., Pham, C. T., Ho, Q. B., Nguyen, M. T., & Duong, T. N. (2020). Chemical characterization and source apportionment of ambient nanoparticles: A case study in Hanoi. Vietnam. Environmental Science and Pollution Research, 27(24), 30661–30672. https://doi.org/10.1007/s11356-020-09417-5

    Article  CAS  Google Scholar 

  • Niu, L., Ye, H., Xu, C., Yao, Y., & Liu, W. (2015). Highly time- and size-resolved fingerprint analysis and risk assessment of airborne elements in a megacity in the Yangtze River Delta, China. Chemosphere, 119, 112–121. https://doi.org/10.1016/j.chemosphere.2014.05.062

    Article  CAS  Google Scholar 

  • Odeshi, T. A., Ana, G. R. E. E., Sridhar, C., & M. K., Olatunji, A. O., & Abimbola, A. F. (2014). Outdoor air particle-bound trace metals in four selected communities in Ibadan. Nigeria. Environmental Geochemistry and Health, 36(4), 755–764. https://doi.org/10.1007/s10653-014-9593-8

    Article  CAS  Google Scholar 

  • Padoan, E., Malandrino, M., Giacomino, A., Grosa, M. M., Lollobrigida, F., Martini, S., & Abollino, O. (2016). Spatial distribution and potential sources of trace elements in PM10 monitored in urban and rural sites of Piedmont Region. Chemosphere, 145, 495–507. https://doi.org/10.1016/j.chemosphere.2015.11.094

    Article  CAS  Google Scholar 

  • Palacio-ortiz, J. D., Londoño-herrera, J. P., Robledo-rengifo, P., & Patricia, C. (2020). Geochemical characteristics of trace elements in size-resolved coastal urban aerosols associated with distinct air masses over tropical peninsular India: size distributions and source apportionment. Revista Colombiana de Psiquiatría, 102560. https://doi.org/10.1016/j.rcp.2020.05.006

  • Panda, S., & Nagendra, S. M. S. (2018). Chemical and morphological characterization of respirable suspended particulate matter ( PM 10 ) and associated heath risk at a critically polluted industrial cluster. Atmospheric Pollution Research, January, 1–13. https://doi.org/10.1016/j.apr.2018.01.011

  • Panda, U., & Das, T. (2016). Micro-structural analysis of individual aerosol coarse particles during different seasons at an eastern coastal site in India. Atmospheric Pollution Research, 1–12. https://doi.org/10.1016/j.apr.2016.08.012

  • Pandey, B., Agrawal, M., & Singh, S. (2014). Assessment of air pollution around coal mining area: Emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmospheric Pollution Research, 5(1), 79–86. https://doi.org/10.5094/APR.2014.010

    Article  CAS  Google Scholar 

  • Pant, P., Baker, S. J., Goel, R., Guttikunda, S., Goel, A., Shukla, A., & Harrison, R. M. (2016). Analysis of size-segregated winter season aerosol data from New Delhi. India. Atmospheric Pollution Research, 7(1), 100–109. https://doi.org/10.1016/j.apr.2015.08.001

    Article  Google Scholar 

  • Panwar, P., Prabhu, V., Soni, A., Punetha, D., & Shridhar, V. (2020). Sources and health risks of atmospheric particulate matter at Bhagwanpur, an industrial site along the Himalayan foothills. SN Applied Sciences, 2(4). https://doi.org/10.1007/s42452-020-2420-1

  • Park, M. Bin, Lee, T. J., Lee, E. S., & Kim, D. S. (2019). Enhancing source identification of hourly PM2.5 data in Seoul based on a dataset segmentation scheme by positive matrix factorization (PMF). Atmospheric Pollution Research, 10(4), 1042–1059. https://doi.org/10.1016/j.apr.2019.01.013

  • Parveen, R., Saini, R., & Taneja, A. (2018). Chemical characterization and health risk assessment of soil and airborne particulates metals and metalloids in populated semiarid region, Agra. India. Environmental Geochemistry and Health, 40(5), 2021–2035. https://doi.org/10.1007/s10653-016-9822-4

    Article  CAS  Google Scholar 

  • Perrino, C., Tiwari, S., Catrambone, M., Torre, S. D., Rantica, E., & Canepari, S. (2011). Chemical characterization of atmospheric PM in Delhi, India, during different periods of the year including Diwali festival. Atmospheric Pollution Research, 2(4), 418–427. https://doi.org/10.5094/APR.2011.048

    Article  CAS  Google Scholar 

  • Pervez, S., Chakrabarty, R. K., Dewangan, S., Watson, J. G., Chow, J. C., & Matawle, J. L. (2016). Chemical speciation of aerosols and air quality degradation during the festival of lights (Diwali). Atmospheric Pollution Research, 7(1), 92–99. https://doi.org/10.1016/j.apr.2015.09.002

    Article  Google Scholar 

  • Pervez, S., Dubey, N., Watson, J. G., Chow, J., & Pervez, Y. (2012). Impact of different household fuel use on source apportionment results of house-Indoor RPM in central India. Aerosol and Air Quality Research, 12(1), 49–60. https://doi.org/10.4209/aaqr.2011.08.0124

    Article  CAS  Google Scholar 

  • Peter, A. E., Shiva Nagendra, S. M., & Nambi, I. M. (2018). Comprehensive analysis of inhalable toxic particulate emissions from an old municipal solid waste dumpsite and neighborhood health risks. Atmospheric Pollution Research, 9(6), 1021–1031. https://doi.org/10.1016/j.apr.2018.03.006

    Article  CAS  Google Scholar 

  • Pindado, O., & Perez, R. M. (2011). Source apportionment of particulate organic compounds in a rural area of Spain by positive matrix factorization. Atmospheric Pollution Research, 2(4), 492–505. https://doi.org/10.5094/APR.2011.056

    Article  CAS  Google Scholar 

  • Pipal, A. S., Kulshrestha, A., & Taneja, A. (2011). Characterization and morphological analysis of airborne PM2.5 and PM10 in Agra located in north central India. Atmospheric Environment, 45(21), 3621–3630. https://doi.org/10.1016/j.atmosenv.2011.03.062

  • Pipalatkar, P., Khaparde, V. V., Gajghate, D. G., & Bawase, M. A. (2014). Source apportionment of PM2.5 using a CMB model for a centrally located indian city. Aerosol and Air Quality Research, 14(3), 1089–1099. https://doi.org/10.4209/aaqr.2013.04.0130

  • Police, S., Sahu, S. K., & Pandit, G. G. (2016). Chemical characterization of atmospheric particulate matter and their source apportionment at an emerging industrial coastal city, Visakhapatnam. India. Atmospheric Pollution Research, 7(4), 725–733. https://doi.org/10.1016/j.apr.2016.03.007

    Article  Google Scholar 

  • Pongpiachan, S., & Iijima, A. (2016). Assessment of selected metals in the ambient air PM10 in urban sites of Bangkok (Thailand). Environmental Science and Pollution Research, 23(3), 2948–2961. https://doi.org/10.1007/s11356-015-5877-5

    Article  CAS  Google Scholar 

  • Popoola, L. T., Adebanjo, S. A., & Adeoye, B. K. (2018). Review: Assessment of atmospheric particulate matter and heavy metals: A critical review. In International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-017-1454-4

    Article  Google Scholar 

  • Prabhu, V., & Shridhar, V. (2019). Investigation of potential sources, transport pathway, and health risks associated with respirable suspended particulate matter in Dehradun city, situated in the foothills of the Himalayas. Atmospheric Pollution Research, 10(1), 187–196. https://doi.org/10.1016/j.apr.2018.07.009

  • Prabhu, V., Shridhar, V., & Choudhary, A. (2019). Investigation of the source, morphology, and trace elements associated with atmospheric PM10 and human health risks due to inhalation of carcinogenic elements at Dehradun, an Indo-Himalayan city. SN Applied Sciences, 1(5). https://doi.org/10.1007/s42452-019-0460-1

  • Prakash, J., Lohia, T., Mandariya, A. K., Habib, G., Gupta, T., & Gupta, S. K. (2018). Chemical characterization and quantitativ e assessment of source-specific health risk of trace metals in PM1.0 at a road site of Delhi, India. Environmental Science and Pollution Research, 25(9), 8747–8764. https://doi.org/10.1007/s11356-017-1174-9

  • Qadir, R. M., Schnelle-Kreis, J., Abbaszade, G., Arteaga-Salas, J. M., Diemer, J., & Zimmermann, R. (2014). Spatial and temporal variability of source contributions to ambient PM10 during winter in Augsburg, Germany using organic and inorganic tracers. Chemosphere, 103, 263–273. https://doi.org/10.1016/j.chemosphere.2013.12.015

    Article  CAS  Google Scholar 

  • Rahman, S. A., Hamzah, M. S., Wood, A. K., Elias, M. S., Salim, N. A. A., & Sanuri, E. (2011). Sources apportionment of fine and coarse aerosol in Klang Valley, Kuala Lumpur using positive matrix factorization. Atmospheric Pollution Research, 2(2), 197–206. https://doi.org/10.5094/APR.2011.025

    Article  CAS  Google Scholar 

  • Rai, P., Chakraborty, A., Mandariya, A. K., & Gupta, T. (2016). Composition and source apportionment of PM1 at urban site Kanpur in India using PMF coupled with CBPF. Atmospheric Research, 178–179, 506–520. https://doi.org/10.1016/j.atmosres.2016.04.015

    Article  CAS  Google Scholar 

  • Rai, P., Furger, M., El Haddad, I., Kumar, V., Wang, L., Singh, A., Dixit, K., Bhattu, D., Petit, J.-E., Ganguly, D., Rastogi, N., Baltensperger, U., Tripathi, S. N., Slowik, J. G., & Prévôt, A. S. H. (2020). Real-time measurement and source apportionment of elements in Delhi’s atmosphere. Science of the Total Environment, 742, 140332. https://doi.org/10.1016/j.scitotenv.2020.140332

    Article  CAS  Google Scholar 

  • Rani, N., Sastry, B. S., & Dey, K. (2019). Assessment of metal contamination and the associated human health risk from dustfall deposition: A study in a mid-sized town in India. Environmental Science and Pollution Research, 26(22), 23173–23191. https://doi.org/10.1007/s11356-019-05539-7

    Article  CAS  Google Scholar 

  • Riffault, V., Arndt, J., Marris, H., Mbengue, S., Setyan, A., Alleman, L. Y., Deboudt, K., Flament, P., Augustin, P., Delbarre, H., & Wenger, J. (2015). Review: Fine and ultrafine particles in the vicinity of industrial activities: A review. Critical Reviews in Environmental Science and Technology, 45(21), 2305–2356. https://doi.org/10.1080/10643389.2015.1025636

    Article  CAS  Google Scholar 

  • Rodriguez-Espinosa, P. F., Flores-Rangel, R. M., Mugica-Alvarez, V., & Morales-Garcia, S. S. (2017). Sources of trace metals in PM10 from a petrochemical industrial complex in Northern Mexico. Air Quality, Atmosphere and Health, 10(1), 69–84. https://doi.org/10.1007/s11869-016-0409-0

    Article  CAS  Google Scholar 

  • Rogula-Kozłowska, W. (2016). Size-segregated urban particulate matter: Mass closure, chemical composition, and primary and secondary matter content. Air Quality, Atmosphere and Health, 9(5), 533–550. https://doi.org/10.1007/s11869-015-0359-y

    Article  CAS  Google Scholar 

  • Rohra, H., Pipal, A. S., Tiwari, R., Vats, P., & Masih, J. (2020). Particle size dynamics and risk implication of atmospheric aerosols in South-Asian subcontinent. Chemosphere.

  • Rohra, H., Tiwari, R., Khare, P., & Taneja, A. (2018). Indoor-outdoor association of particulate matter and bounded elemental composition within coarse, quasi-accumulation and quasi-ultra fi ne ranges in residential areas of northern India. Science of the Total Environment, 631–632, 1383–1397. https://doi.org/10.1016/j.scitotenv.2018.03.095

    Article  CAS  Google Scholar 

  • Rout, T. K., Masto, R. E., Padhy, P. K., Ram, L. C., George, J., & Joshi, G. (2014). Heavy metals in dusts from commercial and residential areas of Jharia coal mining town. Environmental Earth Sciences, 73(1), 347–359. https://doi.org/10.1007/s12665-014-3429-9

    Article  CAS  Google Scholar 

  • Roy, D., Singh, G., & Seo, Y. C. (2019a). Carcinogenic and non-carcinogenic risks from PM10-and PM2.5-Bound metals in a critically polluted coal mining area. Atmospheric Pollution Research, 10(6), 1964–1975.

  • Roy, D., Singh, G., & Yadav, P. (2016a). Identification and elucidation of anthropogenic source contribution in PM10 pollutant: Insight gain from dispersion and receptor models. Journal of Environmental Sciences (china), 48, 69–78. https://doi.org/10.1016/j.jes.2015.11.037

    Article  Google Scholar 

  • Roy, R., Jan, R., Yadav, S., Vasave, M. H., & Gursumeeran Satsangi, P. (2016b). Study of metals in radical-mediated toxicity of particulate matter in indoor environments of Pune, India. Air Quality, Atmosphere and Health, 9(6), 669–680. https://doi.org/10.1007/s11869-015-0376-x

    Article  CAS  Google Scholar 

  • Roy, S., Gupta, S. K., Prakash, J., Habib, G., Baudh, K., & Nasr, M. (2019b). Ecological and human health risk assessment of heavy metal contamination in road dust in the National Capital Territory (NCT) of Delhi. India. Environmental Science and Pollution Research, 26(29), 30413–30425. https://doi.org/10.1007/s11356-019-06216-5

    Article  CAS  Google Scholar 

  • Sah, D., Verma, P. K., Kandikonda, M. K., & Lakhani, A. (2019a). Chemical fractionation, bioavailability, and health risks of heavy metals in fine particulate matter at a site in the Indo-Gangetic Plain. India. Environmental Science and Pollution Research, 26(19), 19749–19762. https://doi.org/10.1007/s11356-019-05144-8

    Article  CAS  Google Scholar 

  • Sah, D., Verma, P. K., Kandikonda, M. K., & Lakhani, A. (2019b). Pollution characteristics, human health risk through multiple exposure pathways, and source apportionment of heavy metals in PM10 at Indo-Gangetic site. Urban Climate, 27(June 2018), 149–162. https://doi.org/10.1016/j.uclim.2018.11.010

  • Sah, D., Verma, P. K., Kumari, K. M., & Lakhani, A. (2019c). Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway. Environmental Geochemistry and Health, 41(3), 1445–1458. https://doi.org/10.1007/s10653-018-0223-8

    Article  CAS  Google Scholar 

  • Saha, D., Chatterjee, D., Chakravarty, S., & Roychowdhury, T. (2019). Investigation of Environmental-Concern Trace Elements in Coal and Their Combustion Residues from Thermal Power Plants in Eastern India. Natural Resources Research, 28(4), 1505–1520. https://doi.org/10.1007/s11053-019-09451-2

    Article  CAS  Google Scholar 

  • Sahu, S. P., Yadav, M., Rani, N., & Das, A. J. (2018). Assessment of occupational health exposure to particulate matter around opencast coal mines, India: a case study. Arabian Journal of Geosciences, 11(14). https://doi.org/10.1007/s12517-018-3631-2

  • Samek, L., Stegowski, Z., Styszko, K., Furman, L., Zimnoch, M., Skiba, A., Kistler, M., Kasper-Giebl, A., Rozanski, K., & Konduracka, E. (2020). Seasonal variations of chemical composition of PM2.5 fraction in the urban area of Krakow, Poland: PMF source attribution. Air Quality, Atmosphere and Health, 13(1), 89–96. https://doi.org/10.1007/s11869-019-00773-x

  • Samek, L., Furman, L., Mikrut, M., Regiel-Futyra, A., Macyk, W., Stochel, G., & van Eldik, R. (2017). Chemical composition of submicron and fine particulate matter collected in Krakow, Poland. Consequences for the APARIC Project. Chemosphere, 187, 430–439. https://doi.org/10.1016/j.chemosphere.2017.08.090

    Article  CAS  Google Scholar 

  • Sanguineti, P. B., Lanzaco, B. L., López, M. L., Achad, M., Palancar, G. G., Olcese, L. E., & Toselli, B. M. (2020). PM2.5 monitoring during a 10-year period: relation between elemental concentration and meteorological conditions. Environmental Monitoring and Assessment, 192(5). https://doi.org/10.1007/s10661-020-08288-0

  • Santos, J. M., Reis, N. C., Galvão, E. S., Silveira, A., Goulart, E. V., & Lima, A. T. (2017). Source apportionment of settleable particles in an impacted urban and industrialized region in Brazil. Environmental Science and Pollution Research, 24(27), 22026–22039. https://doi.org/10.1007/s11356-017-9677-y

    Article  CAS  Google Scholar 

  • Saradhi, I. V., Sandeep, P., & Pandit, G. G. (2014). Assessment of elemental contamination in road dust using EDXRF. Journal of Radioanalytical and Nuclear Chemistry, 302(3), 1377–1383. https://doi.org/10.1007/s10967-014-3550-y

    Article  CAS  Google Scholar 

  • Satsangi, P. G., & Yadav, S. (2014). Characterization of PM2.5 by X-ray diffraction and scanning electron microscopy-energy dispersive spectrometer: Its relation with different pollution sources. International Journal of Environmental Science and Technology, 11(1), 217–232. https://doi.org/10.1007/s13762-012-0173-0

  • Satsangi, P. G., Yadav, S., Pipal, A. S., & Kumbhar, N. (2014). Characteristics of trace metals in fine (PM2.5) and inhalable (PM10) particles and its health risk assessment along with in-silico approach in indoor environment of India. Atmospheric Environment, 92, 384–393. https://doi.org/10.1016/j.atmosenv.2014.04.047

    Article  CAS  Google Scholar 

  • Scerri, M. M., Genga, A., Iacobellis, S., Delmaire, G., Giove, A., Siciliano, M., Siciliano, T., & Weinbruch, S. (2019). Investigating the plausibility of a PMF source apportionment solution derived using a small dataset: A case study from a receptor in a rural site in Apulia - South East Italy. Chemosphere, 236, 124376. https://doi.org/10.1016/j.chemosphere.2019.124376

    Article  CAS  Google Scholar 

  • Scerri, M. M., Kandler, K., Weinbruch, S., Yubero, E., Galindo, N., Prati, P., Caponi, L., & Massabò, D. (2018). Estimation of the contributions of the sources driving PM2.5 levels in a Central Mediterranean coastal town. Chemosphere, 211, 465–481. https://doi.org/10.1016/j.chemosphere.2018.07.104

    Article  CAS  Google Scholar 

  • Sen, I. S., Bizimis, M., Tripathi, S. N., & Paul, D. (2016). Lead isotopic fingerprinting of aerosols to characterize the sources of atmospheric lead in an industrial city of India. Atmospheric Environment, 129, 27–33. https://doi.org/10.1016/j.atmosenv.2016.01.005

    Article  CAS  Google Scholar 

  • Seneviratne, M. C. S., Waduge, V. A., Hadagiripathira, L., Sanjeewani, S., Attanayake, T., Jayaratne, N., & Hopke, P. K. (2011). Characterization and source apportionment of particulate pollution in Colombo. Sri Lanka. Atmospheric Pollution Research, 2(2), 207–212. https://doi.org/10.5094/APR.2011.026

    Article  CAS  Google Scholar 

  • Shaltout, A. A., Boman, J., Hassan, S. K., Abozied, A. M., Al-Ashkar, E. A., Abd-Elkader, O. H., Yassin, M. A., & Al-Tamimi, J. H. (2020). Elemental Composition of PM2.5 Aerosol in a Residential–Industrial Area of a Mediterranean Megacity. Archives of Environmental Contamination and Toxicology, 78(1), 68–78. https://doi.org/10.1007/s00244-019-00688-9

  • Sharma, S. K., & Mandal, T. K. (2017). Chemical composition of fine mode particulate matter (PM2.5) in an urban area of Delhi, India and its source apportionment. Urban Climate, 21, 106–122. https://doi.org/10.1016/j.uclim.2017.05.009

    Article  Google Scholar 

  • Sharma, S. K., Mandal, T. K., Saxena, M., Rashmi, R., Sharma, A., & Gautam, R. (2014a). Source apportionment of PM10 by using positive matrix factorization at an urban site of Delhi, India. Urban Climate, 10, 656–670. https://doi.org/10.1016/j.uclim.2013.11.002

    Article  Google Scholar 

  • Sharma, S. K., Mandal, T. K., Saxena, M., Rashmi, S., & A., Datta, A., & Saud, T. (2014b). Variation of OC, EC, WSIC and trace metals of PM10 in Delhi, India. Journal of Atmospheric and Solar-Terrestrial Physics, 113, 10–22. https://doi.org/10.1016/j.jastp.2014.02.008

    Article  CAS  Google Scholar 

  • Sharma, S. K., Sharma, A., Saxena, M., Choudhary, N., Masiwal, R., Mandal, T. K., & Sharma, C. (2016). Chemical characterization and source apportionment of aerosol at an urban area of Central Delhi. India. Atmospheric Pollution Research, 7(1), 110–121. https://doi.org/10.1016/j.apr.2015.08.002

    Article  Google Scholar 

  • Shen, H., Yang, T. mou, Lu, C. chung, Yuan, C. shin, Hung, C. H., Lin, C. tsan, Lee, C. wei, **g, G., Hu, G., & Lo, K. cheng. (2020). Chemical fingerprint and source apportionment of PM2.5 in highly polluted events of southern Taiwan. Environmental Science and Pollution Research, 27(7), 6918–6935. https://doi.org/10.1007/s11356-019-07328-8

  • Shivani, G., & R., Saxena, M., Sharma, S. K., & Mandal, T. K. (2019). Short-term degradation of air quality during major firework events in Delhi. India. Meteorology and Atmospheric Physics, 131(4), 753–764. https://doi.org/10.1007/s00703-018-0602-9

    Article  Google Scholar 

  • Si, R., **n, J., Zhang, W., Li, S., Wen, T., Wang, Y., Ma, Y., Liu, Z., Xu, X., Li, M., & Liu, G. (2019). Source apportionment and health risk assessment of trace elements in the heavy industry areas of Tangshan, China. Air Quality, Atmosphere and Health, 12(11), 1303–1315. https://doi.org/10.1007/s11869-019-00745-1

    Article  CAS  Google Scholar 

  • Singh, D. K., & Gupta, T. (2016). Source apportionment and risk assessment of PM1 bound trace metals collected during foggy and non-foggy episodes at a representative site in the Indo-Gangetic plain. Science of the Total Environment, 550, 80–94. https://doi.org/10.1016/j.scitotenv.2016.01.037

    Article  CAS  Google Scholar 

  • Singh, D. P., Gadi, R., & Mandal, T. K. (2011). Characterization of particulate-bound polycyclic aromatic hydrocarbons and trace metals composition of urban air in Delhi. India. Atmospheric Environment, 45(40), 7653–7663. https://doi.org/10.1016/j.atmosenv.2011.02.058

    Article  CAS  Google Scholar 

  • Singh, K., Singh, D. P., Dixit, C. K., Singh, N., Sharma, C., Sahai, S., Jha, A. K., Khan, Z. H., & Gupta, P. K. (2012). Chemical characteristics of aerosols and trace gas distribution over North and Central India. Environmental Monitoring and Assessment, 184(7), 4553–4564. https://doi.org/10.1007/s10661-011-2284-3

    Article  CAS  Google Scholar 

  • Singh, N., Ahuja, T., Ojha, V. N., Soni, D., Swarupa Tripathy, S., & Leito, I. (2013). Quantifying uncertainty in the measurement of arsenic in suspended particulate matter by Atomic Absorption Spectrometry with hydride generator. Springerplus, 2(1), 1–11. https://doi.org/10.1186/2193-1801-2-453

    Article  CAS  Google Scholar 

  • Singh, N., Murari, V., Kumar, M., Barman, S. C., & Banerjee, T. (2017). Fine particulates over South Asia: Review and meta-analysis of PM2.5 source apportionment through receptor model. Environmental Pollution, 223(2016), 121–136. https://doi.org/10.1016/j.envpol.2016.12.071

  • Singh, P., Saini, R., & Taneja, A. (2014). Physicochemical characteristics of PM2.5: Low, middle, and high-income group homes in Agra, India-a case study. Atmospheric Pollution Research, 5(3), 352–360. https://doi.org/10.5094/APR.2014.041

  • Srimuruganandam, B., & Shiva Nagendra, S. M. (2011a). Characteristics of particulate matter and heterogeneous traffic in the urban area of India. Atmospheric Environment, 45(18), 3091–3102. https://doi.org/10.1016/j.atmosenv.2011.03.014

    Article  CAS  Google Scholar 

  • Srimuruganandam, B., & Shiva Nagendra, S. M. (2011b). Chemical characterization of PM10 and PM2.5 mass concentrations emitted by heterogeneous traffic. Science of the Total Environment, 409(17), 3144–3157.

  • Srivastava, D., Goel, A., & Agrawal, M. (2016). Particle Bound Metals at Major Intersections in an Urban Location and Source Identification Through Use of Metal Markers. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 86(2), 209–220. https://doi.org/10.1007/s40010-016-0268-y

    Article  CAS  Google Scholar 

  • Sudheer, A. K., & Rengarajan, R. (2012). Atmospheric mineral dust and trace metals over urban environment in western India during winter. Aerosol and Air Quality Research, 12(5), 923–933. https://doi.org/10.4209/aaqr.2011.12.0237

    Article  CAS  Google Scholar 

  • Suryawanshi, S., Chauhan, A. S., Verma, R., & Gupta, T. (2016). Identification and quantification of indoor air pollutant sources within a residential academic campus. Science of the Total Environment, 569–570, 46–52. https://doi.org/10.1016/j.scitotenv.2016.06.061

    Article  CAS  Google Scholar 

  • Suvarapu, L. N., & Baek, S.-O. (2017). Review: Determination of heavy metals in the ambient atmosphere. Toxicology and Industrial Health, 33(1), 79–96. https://doi.org/10.1177/0748233716654827

    Article  CAS  Google Scholar 

  • Suvarapu, L. N., Seo, Y. K., & Baek, S. O. (2014). Review: Heavy metals in the Indian atmosphere: A review. In Research Journal of Chemistry and Environment.

  • Taner, S., Pekey, B., & Pekey, H. (2013). Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks. Science of the Total Environment, 454–455, 79–87. https://doi.org/10.1016/j.scitotenv.2013.03.018

    Article  CAS  Google Scholar 

  • Tian, Y. Z., Chen, G., Wang, H. T., Huang-Fu, Y. Q., Shi, G. L., Han, B., & Feng, Y. C. (2016). Source regional contributions to PM2.5 in a megacity in China using an advanced source regional apportionment method. Chemosphere, 147, 256–263. https://doi.org/10.1016/j.chemosphere.2015.12.132

    Article  CAS  Google Scholar 

  • Tian, Y. Z., Chen, J. B., Zhang, L. L., Du, X., Wei, J. J., Fan, H., Xu, J., Wang, H. T., Guan, L., Shi, G. L., & Feng, Y. C. (2017). Source profiles and contributions of biofuel combustion for PM2.5, PM10 and their compositions, in a city influenced by biofuel stoves. Chemosphere, 189, 255–264. https://doi.org/10.1016/j.chemosphere.2017.09.044

    Article  CAS  Google Scholar 

  • Tian, Y. Z., Shi, G. L., Han, B., Wu, J. H., Zhou, X. Y., Zhou, L. D., Zhang, P., & Feng, Y. C. (2015). Using an improved Source Directional Apportionment method to quantify the PM2.5 source contributions from various directions in a megacity in China. Chemosphere, 119, 750–756. https://doi.org/10.1016/j.chemosphere.2014.08.015

    Article  CAS  Google Scholar 

  • Todorović, M. N., Radenković, M. B., Onjia, A. E., & Ignjatović, L. M. (2020). Characterization of PM2.5 sources in a Belgrade suburban area: a multi-scale receptor-oriented approach. Environmental Science and Pollution Research, 27(33), 41717–41730. https://doi.org/10.1007/s11356-020-10129-z

  • Tripathy, D. P., & Dash, T. R. (2019). Study of morphological characteristics and elemental composition of respirable particulate matter in an opencast coal mineusing FESEM-EDX. Arabian Journal of Geosciences, 12(16). https://doi.org/10.1007/s12517-019-4624-5

  • Upadhyay, N., Majestic, B. J., Prapaipong, P., & Herckes, P. (2009). Evaluation of polyurethane foam, polypropylene, quartz fiber, and cellulose substrates for multi-element analysis of atmospheric particulate matter by ICP-MS. Analytical and Bioanalytical Chemistry, 394(1), 255–266. https://doi.org/10.1007/s00216-009-2671-6

    Article  CAS  Google Scholar 

  • USEPA. (1999a). National air toxics program. The integrated urban strategy. United States Environmental Protection Agency’s, Federal Reg. 64 (137).

  • USEPA. (1999b). Method for the determination of inorganic compounds in ambient air. United States EPA, office of research and development, Washington, DC, EPA/625/R-96/010a.

  • Vargas, F. A., Rojas, N. Y., Pachon, J. E., & Russell, A. G. (2012). PM10 characterization and source apportionment at two residential areas in Bogota. Atmospheric Pollution Research, 3(1), 72–80. https://doi.org/10.5094/APR.2012.006

    Article  CAS  Google Scholar 

  • Varshney, P., Saini, R., & Taneja, A. (2016). Trace element concentration in fine particulate matter (PM2.5) and their bioavailability in different microenvironments in Agra, India: a case study. Environmental Geochemistry and Health, 38(2), 593–605. https://doi.org/10.1007/s10653-015-9745-5

  • Vossler, T., Černikovský, L., Novák, J., & Williams, R. (2016). Source apportionment with uncertainty estimates of fine particulate matter in Ostrava, Czech Republic using Positive Matrix Factorization. Atmospheric Pollution Research, 7(3), 503–512. https://doi.org/10.1016/j.apr.2015.12.004

    Article  Google Scholar 

  • Wahid, N. B. A., Latif, M. T., Suan, L. S., Dominick, D., Sahani, M., Jaafar, S. A., & Mohd Tahir, N. (2014). Source identification of particulate matter in a semi-urban area of Malaysia using multivariate techniques. Bulletin of Environmental Contamination and Toxicology, 92(3), 317–322. https://doi.org/10.1007/s00128-014-1201-1

    Article  CAS  Google Scholar 

  • Wang, Y., & Hopke, P. K. (2013). A ten-year source apportionment study of ambient fine particulate matter in San Jose. California. Atmospheric Pollution Research, 4(4), 398–404. https://doi.org/10.5094/APR.2013.045

    Article  CAS  Google Scholar 

  • Wei, Z., Wang, L. T., Chen, M. Z., & Zheng, Y. (2014). The 2013 severe haze over the Southern Hebei, China: PM2.5 composition and source apportionment. Atmospheric Pollution Research, 5(4), 759–768. https://doi.org/10.5094/APR.2014.085

  • Wimolwattanapun, W., Hopke, P. K., & Pongkiatkul, P. (2011). Source apportionment and potential source locations of PM2.5 and PM2.5–10 at residential sites in metropolitan Bangkok. Atmospheric Pollution Research, 2(2), 172–181. https://doi.org/10.5094/APR.2011.022

  • Yadav, A. K., Sahoo, S. K., Dubey, J. S., Kumar, A. V., Pandey, G., & Tripathi, R. M. (2019). Assessment of particulate matter, metals of toxicological concentration, and health risk around a mining area, Odisha, India. Air Quality, Atmosphere and Health, 12(7), 775–783. https://doi.org/10.1007/s11869-019-00688-7

    Article  CAS  Google Scholar 

  • Yadav, Shweta, Tandon, A., Tripathi, J. K., Yadav, S., & Attri, A. K. (2016). Statistical assessment of respirable and coarser size ambient aerosol sources and their timeline trend profile determination: A four year study from Delhi. In Atmospheric Pollution Research (Vol. 7, Issue 1, pp. 190–200). https://doi.org/10.1016/j.apr.2015.08.010

  • Yadav, S., & Satsangi, P. G. (2013). Characterization of particulate matter and its related metal toxicity in an urban location in South West India. Environmental Monitoring and Assessment, 185(9), 7365–7379. https://doi.org/10.1007/s10661-013-3106-6

    Article  CAS  Google Scholar 

  • Yang, J., Liu, G., Yao, Y., **ao, C., Lin, Q., Tang, C., Wang, P., **, X., Ni, B., & Cui, D. (2020). Elemental analysis of PM2.5 using PIXE and NAA in **nzhen, Bei**g. Journal of Radioanalytical and Nuclear Chemistry, 323(1), 457–463. https://doi.org/10.1007/s10967-019-06944-5

  • Ye, Z., Li, Q., Liu, J., Luo, S., Zhou, Q., Bi, C., Ma, S., Chen, Y., Chen, H., Li, L., & Ge, X. (2017). Investigation of submicron aerosol characteristics in Changzhou, China: Composition, source, and comparison with co-collected PM2.5. Chemosphere, 183, 176–185. https://doi.org/10.1016/j.chemosphere.2017.05.094

    Article  CAS  Google Scholar 

  • Zhang, N., Zhuang, M., Tian, J., Tian, P., Zhang, J., Wang, Q., Zhou, Y., Huang, R., Zhu, C., Zhang, X., & Cao, J. (2016). Development of source profiles and their application in source apportionment of PM2.5 in **amen, China. Frontiers of Environmental Science and Engineering, 10(5), 1–13. https://doi.org/10.1007/s11783-016-0879-1

  • Zhao, R., Han, B., Lu, B., Zhang, N., Zhu, L., & Bai, Z. (2015). Element composition and source apportionment of atmospheric aerosols over the China Sea. Atmospheric Pollution Research, 6(2), 191–201. https://doi.org/10.5094/APR.2015.023

    Article  CAS  Google Scholar 

  • Zwoździak, A., Sówka, I., Krupińska, B., Zwoździak, J., & Nych, A. (2013). Infiltration or indoor sources as determinants of the elemental composition of particulate matter inside a school in Wrocław, Poland? Building and Environment, 66, 173–180. https://doi.org/10.1016/j.buildenv.2013.04.023

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful to Prof. A. K. Saxena, Dr. Abhilash Shukla and Dr. Jayvant Chaudhary for their valuable guidance throughout the preparation of this study.

Author information

Authors and Affiliations

Authors

Contributions

An author develop an idea of sharing knowledge about the topic and do the necessary work by itself. Further, an author would like to thank to Dr. M. K. Trivedi for verifying all the facts & figures and suggested a suitable guideline to prepare this manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jay Singh Rajput.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 124 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, J.S., Trivedi, M.K. Determination and assessment of elemental concentration in the atmospheric particulate matter: a comprehensive review. Environ Monit Assess 194, 243 (2022). https://doi.org/10.1007/s10661-022-09833-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09833-9

Keywords

Navigation