Log in

Arsenic accumulation in lichens of Mandav monuments, Dhar district, Madhya Pradesh, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Total arsenic in four different growth forms of lichens growing on old monuments in the city of Mandav, Dhar district of Madhya Pradesh, India was analyzed. Among the different growth forms, foliose lichens were found to accumulate higher amounts of arsenic followed by leprose form. The squamulose and crustose form accumulates the lower concentration of arsenic and ranged between 0.46 ± 0.03 and 20.99 ± 0.58 μg g − 1 dry weight, while the foliose and leprose lichens have ranges from 10.98–51.95 and 28.63–51.20 μg g − 1 dry weight, respectively. The substrate having high arsenic ranges also exhibit higher ranges of arsenic on lichens growing on them. The cyanolichens exhibit higher concentration of arsenic than the green photobiont-containing squamulose form. The higher concentration of arsenic was found at site having past mining activities. LSD (1%) shows significant difference for As concentration in lichens thallus between the selected sites and species both.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al, T. A., & Blowes, D. W. (1999). The hydrogeology of a tailing impoundment formed by central discharge of thickened tailing: implications for tailing management. Journal of Contaminant Hydrology, 38, 489–505. doi:10.1016/S0169-7722(99)00007-8.

    Article  CAS  Google Scholar 

  • Bajpai, R., Upreti, D. K., & Mishra, S. K. (2004). Pollution monitoring with the help of lichen transplant technique (LTT) at some residential sites of Lucknow. Journal of Environmental Biology, 25(2), 191–195.

    CAS  Google Scholar 

  • Brown, D. H., & Beckett, R. P. (1984). Lichens as indicators. Lichenologist (London, England), 16, 173–188. doi:10.1017/S0024282984000323.

    Article  CAS  Google Scholar 

  • Charlesworth, S., Everett, M., McCarty, R., Ordonez, A., & de Miguel, E. A. (2003). A comparative study of heavy metal concentration and distribution in deposited street dust in a large and a small urban area, Birminghman and Coventry, West midlands U. K. Environment International, 29, 563–573. doi:10.1016/S0160-4120(03)00015-1.

    Article  CAS  Google Scholar 

  • Dubey, A. N., Pandey, V., Upreti, D. K., & Singh, J. (1999). Accumulation of lead in lichens growing in and around Faizabad City, U.P. Journal of Environmental Biology, 20(3), 223–225.

    CAS  Google Scholar 

  • Farinha, M. M., Freitas, M. C., & Almeid, S. M. (2004). Air quality control monitoring at an urban and industrilized area. Journal of Radioanalytical and Nuclear Chemistry, 259, 203–207. doi:10.1023/B:JRNC.0000017288.21685.85.

    Article  CAS  Google Scholar 

  • Freitas, M. C., Reis, M. A., alves, L. C., Marques, A. P. & Costa, C. (1999). Environmental assessment in an industrial area of Portugal. Biological Trace Element Research, 71/72, 273–280. doi:10.1007/BF02784213.

    Article  Google Scholar 

  • Garty, J. (2001). Biomonitoring atmospheric heavy metals with lichens: theory and application. Critical Reviews in Plant Sciences, 20(4), 309–371. doi:10.1016/S0735-2689(01)80040-X.

    Article  CAS  Google Scholar 

  • Goyal, R., & Seaward, M. R. D. (1982). Metal uptake in terricolous lichens. III Translocation in the thallus of Peltigera canina. The New Phytologist, 90, 85–98. doi:10.1111/j.1469-8137.1982.tb03244.x.

    Article  CAS  Google Scholar 

  • Koch, I., Wang, L., Reimer, K. J., & Cullen, W. R. (2000). Arsenic species in terrestrial fungi and lichens from Yellowknife, NWT, Canada. Applied Organometallic Chemistry, 14, 245–252. doi:10.1002/(SICI)1099-0739(200005)14:5<245::AID-AOC986>3.0.CO;2-K.

    Article  CAS  Google Scholar 

  • Loppi, S., & Pirintsos, S. A. (2003). Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystem (central Italy). Environmental Pollution, 121, 327–332. doi:10.1016/S0269-7491(02)00269-5.

    Article  CAS  Google Scholar 

  • Machado, A., Sleykovec, Z., Van Elteran, J. T., Fritas, M. C., & Baptista, M. S. (2006). Arsenic species in transplanted lichens and tree bark in the framework of a biomonitoring scenario. Journal of Atmospheric Chemistry, 53, 237–249. doi:10.1007/s10874-006-9013-2.

    Article  CAS  Google Scholar 

  • Madhavan, N., & Subramanian, V. (2000). Sulphide mining as a source of arsenic in the environment. Current Science, 78, 702–709.

    CAS  Google Scholar 

  • Mishra, S., Srivastava, S., Tripathi, R. D., & Trivedi, P. K. (2008). Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquatic Toxicology (Amsterdam, Netherlands), 86, 205–215.

    CAS  Google Scholar 

  • Mrak, T., Slejkovec, Z., & Jeran, Z. (2006). Extraction of arsenic compounds from lichens. Talanta, 69, 251–268. doi:10.1016/j.talanta.2005.10.011.

    Article  CAS  Google Scholar 

  • Nayaka, S., Upreti, D. K., Gadgil, M., & Pandey, V. (2003). Distribution pattern and heavy metal accumulation in lichen of Bangalore City with reference to Lalbagh Garden. Current Science, 84(5), 674–680.

    CAS  Google Scholar 

  • Niriagu, J. O., & Azcue, J. M. (1990). Environmental sources of arsenic in food. Advances in Environmental Science and Technology, 23, 103–127.

    Google Scholar 

  • Rio, M. D., Font, R., Almela, C., Velez, D., Montoro, R., & Bailon, A. D. H. (2002). Heavy metal and arsenic uptake by wild vegetation in the Guadiamar river area after the toxic spill of the Aznalollaor mine. Journal of Biotechnology, 98, 125–137. doi:10.1016/S0168-1656(02)00091-3.

    Article  Google Scholar 

  • Shukla, V., & Upreti, D. K. (2007). Heavy metal accumulation in Phaeophyscia hispidula en route to Badrinath, Uttaranchal, India. Environmental Monitoring and Assessment, 131, 365–369. doi:10.1007/s10661-006-9481-5.

    Article  CAS  Google Scholar 

  • Singh, N., Ma, L. Q., Srivastava, M., & Rathinasabapthi, B. (2006). Metabolic adaptation to arsenic-induced oxidative stress in Pteris vittata L. and P. ensiformis L. Plant Science, 170, 274–282. doi:10.1016/j.plantsci.2005.08.013.

    Article  CAS  Google Scholar 

  • Sloof, J. E. (1991). Lichens as quantitative biomonitors for atmosphere trace elements deposition, using transplants. Atmospheric Environment, 29, 11–19. doi:10.1016/1352-2310(94)00221-6.

    Article  Google Scholar 

  • Srivastava, S., Mishra, S., Tripathi, R. D., Dwivedi, S., Trivedi, P. K., & Tandon, P. K. (2007). Phytochelatins and antioxidant systems respond differently during arsenite and arsenate stress in Hydrilla verticillata (L.f) Royle. Environmental Science & Technology, 41, 2930–2936. doi:10.1021/es062167j.

    Article  CAS  Google Scholar 

  • Upreti, D. K., & Pandey, V. (2000). Determination of heavy metals in lichens growing on different ecological habitats in Schirmacher Oasis, East Antarctica. Spectroscopy Letters, 33(3), 435–444. doi:10.1080/00387010009350090.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Upreti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajpai, R., Upreti, D.K. & Dwivedi, S.K. Arsenic accumulation in lichens of Mandav monuments, Dhar district, Madhya Pradesh, India. Environ Monit Assess 159, 437–442 (2009). https://doi.org/10.1007/s10661-008-0641-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0641-7

Keywords

Navigation