Log in

A comparison of disease severity measurements using image analysis and visual estimates using a category scale for genetic analysis of resistance to bacterial spot in tomato

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Bacterial spot caused by several Xanthomonas spp. is an economically important disease of tomato (Solanum lycopersicum L.). Host resistance to the disease is partially dominant or incomplete, which requires accurate assessment of disease severity for genetic studies of resistance. In the present study, three independent experiments were conducted to investigate the feasibility of using image analysis to estimate foliar disease severity of bacterial spot in tomato. The resistant line PI 114490 and the susceptible line OH 88119 were used in the first experiment, five tomato lines (PI 114490, PI 128216, Hawaii 7981, Hawaii 7998, and Fla. 7600) with a range of resistance and OH 88119 were used in the second experiment, and 439 F2 individuals from a cross between OH 88119 and PI 114490 were used in the third experiment. Tomato plants were spray-inoculated with bacterial spot race T3. Five diseased leaves from each plant were randomly collected and scanned to obtain digital images 21 days after inoculation. The disease severity (% leaf area) was measured using image analysis. The susceptible line OH 88119 showed the most severe disease. The resistant line PI 114490 showed the least severe disease, and was not significantly different to PI 128216 or Hawaii 7981. These results indicated that image analysis could be used to distinguish tomato lines with different resistance to bacterial spot. Marker-trait association analysis identified four quantitative trait loci conferring resistance to race T3 in PI 114490 using data obtained from image analysis, the Horsfall-Barratt (HB) category scale data, and HB midpoint converted values. However, the disease severity was slightly underestimated using the HB category scale and the phenotypic variation explained by each marker was overestimated using the HB category data compared to using the image analysis-measured disease severity data. Therefore, image analysis could provide a consistent, accurate and reliable method compared to the HB scale to estimate disease severity for genetic studies of foliar bacterial spot in tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bade, C. I. A., & Carmona, M. A. (2011). Comparison of methods to assess severity of common rust caused by Puccinia sorghi in maize. Tropical Plant Pathology, 36(4), 264–266.

    Article  Google Scholar 

  • Bock, C. H., Parker, P. E., Cook, A. Z., & Gottwald, T. R. (2008). Visual rating and the use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves. Plant Disease, 92, 530–541.

    Article  Google Scholar 

  • Bock, C. H., Cook, A. Z., Parker, P. E., & Gottwald, T. R. (2009a). Automated image analysis of the severity of foliar citrus canker symptoms. Plant Disease, 93, 660–665.

    Article  Google Scholar 

  • Bock, C. H., Gottwal, T. R., Parker, P. E., Cook, A. Z., Ferrandino, F., Parnel, S., & van den Bosch, F. (2009b). The Horsfall-Barratt scale and severity estimates of citrus canker. European Journal of Plant Pathology, 125, 23–38.

    Article  Google Scholar 

  • Bock, C. H., Gottwald, T. R., Parker, P. E., Ferrandino, F., Welham, S., van den Bosch, F., & Parnell, S. (2010a). Some consequences of using the Horsfall-Barratt scale for hypothesis testing. Phytopathology, 100, 1031–1041.

    Article  Google Scholar 

  • Bock, C. H., Poole, G. H., Parker, P. E., & Gottwald, T. R. (2010b). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences, 29, 59–107.

    Article  Google Scholar 

  • Bock, C. H., Wood, B. W., van den Bosch, F., Parnell, S., & Gottwald, T. R. (2013). The effect of Horsfall-Barratt category size on the accuracy and reliability of estimates of pecan scab severity. Plant Disease, 97, 797–806.

    Article  Google Scholar 

  • Campos-Soriano, L., García-Martínez, J., & San Segundo, B. (2012). The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Molecular Plant Pathology, 13, 579–592.

    Article  PubMed  CAS  Google Scholar 

  • Frary, A., Xu, Y., Liu, J., Mitchell, S., Tedeschi, E., & Tanksley, S. D. (2005). Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theoretical and Applied Genetics, 111, 291–312.

    Article  PubMed  CAS  Google Scholar 

  • Guo, S. C., Zhuang, J. R., Li, Q., & Dong, Q. C. (2008). Investigation and integrative management of bacterial spot in Fei County. China Vegetables, 5, 60–61.

    Google Scholar 

  • Horsfall, J. G., & Barratt, R. W. (1945). An improved grading system for measuring plant diseases. Phytopathology, 35, 655.

    Google Scholar 

  • Hutton, S. F., Scott, J. W., & Jones, J. B. (2010a). Inheritance of resistance to bacterial spot race T4 from three tomato breeding lines with differing resistance backgrounds. Journal of the American Society for Horticultural Science, 135, 150–158.

    Google Scholar 

  • Hutton, S. F., Scott, J. W., Yang, W. C., Sim, S. C., Francis, D. M., & Jones, J. B. (2010b). Identification of QTL associated with resistance to bacterial spot race T4 in tomato. Theoretical and Applied Genetics, 121, 1275–1287.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. B., Jones, J. P., Stall, R. E., & Zitter, T. A. (Eds.). (1991). Compendium of tomato diseases. Minnesota, USA: APS Press.

    Google Scholar 

  • Kabelka, E., Franchino, B., & Francis, D. M. (2002). Two loci from Lycopersicon hirsutum confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology, 92, 504–510.

    Article  PubMed  CAS  Google Scholar 

  • Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47, 583–621.

    Article  Google Scholar 

  • Lamari, L. (2008). ASSESS2.0: Image analysis software for plant disease quantification. Minnesota, USA: APS Press.

    Book  Google Scholar 

  • Lelliot, R. A., & Stead, D. E. (1987). Methods for the diagnosis of bacterial diseases of plants. Oxford: Blackwell Scientific Publication Ltd.

    Google Scholar 

  • Lin, L. I. K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45, 255–268.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y. Y., Cui, Y. Q., & Bao, L. L. (2008). New features of occurrence and approaches for no pollution management for tomato disease in greenhouse. **lin Vegetables, 2, 47.

    Google Scholar 

  • Moya, E. A., Barrales, L. R., & Apablaza, G. E. (2005). Assessment of the disease severity of squash powdery mildew through visual analysis, digital image analysis and validation of these methodologies. Crop Protection, 24, 785–789.

    Article  Google Scholar 

  • Nita, M., Ellis, M. A., & Madden, L. V. (2003). Reliability and accuracy of visual estimation of Phomopsis leaf blight of strawberry. Phytopathology, 93, 995–1005.

    Article  PubMed  CAS  Google Scholar 

  • Nutter, F. W., Jr., & Esker, P. D. (2006). The role of psychophysics in phytopathology: the Weber-Fechner law revisited. European Journal of Plant Pathology, 114, 199–213.

    Article  Google Scholar 

  • Nutter, F. W., Jr., Gleason, M. L., Jenco, J. H., & Christians, N. C. (1993). Assessing the accuracy, intra-rater repeatability, and inter-rater reliability of disease assessment systems. Phytopathology, 83, 806–812.

    Article  Google Scholar 

  • Parker, S. R., Whelan, M. J., & Royle, D. J. (1995). Reliable measurement of disease severity. Aspects of Applied Biology, 43, 205–214.

    Google Scholar 

  • Pei, C. C., Wang, H., Zhang, J. Y., Wang, Y. Y., Francis, D. M., & Yang, W. C. (2012). Fine map** and analysis of a candidate gene in tomato accession PI128216 conferring hypersensitive resistance to bacterial spot race T3. Theoretical and Applied Genetics, 124, 533–542.

    Article  PubMed  CAS  Google Scholar 

  • Poland, J. A., & Nelson, R. J. (2011). In the eye of the beholder: the effect of rater variability and different rating scales on QTL map**. Phytopathology, 101, 290–298.

    Article  PubMed  Google Scholar 

  • Price, T. V., Gross, R., Ho Wey, J., & Osborne, C. F. (1993). A comparison of visual and digital image-processing methods in quantifying the severity of coffee leaf rust (Hemileia vastatrix). Australian Journal of Experimental Agriculture, 33, 97–101.

    Article  Google Scholar 

  • Scott, J. W., & Jones, J. B. (1989). Inheritance of resistance to foliar bacterial spot of tomato incited by Xanthomonas campestris pv. vesicatoria. Journal of the American Society for Horticultural Science, 114, 111–114.

    Google Scholar 

  • Scott, J. W., Jones, J. B., & Somodi, G. C. (1995). Screening tomato accessions for resistance to Xanthomonas campestris pv. vesicatoria, race T3. HortScience, 30, 579–581.

    Google Scholar 

  • Scott, J. W., Francis, D. M., Miller, S. A., Somodi, G. C., & Jones, J. B. (2003). Tomato bacterial spot resistance derived from PI 114490; inheritance of resistance to race T2 and relationship across three pathogen races. Journal of the American Society for Horticultural Science, 128, 698–703.

    Google Scholar 

  • Sharma, D., Gupta, S. K., & Kumud, J. (2011). Studies on the inheritance pattern of bacterial spot (Xanthomonas vesicatoria) in tomato. Indian Phytopathology, 64(2), 128–130.

    Google Scholar 

  • Sim, S. C., Robbins, M. D., Chilcott, C., Zhu, T., & Francis, D. M. (2009). Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L.) reveals patterns of SNP variation associated with breeding. BMC Genomics, 10, 466.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Somodi, G. C., Jones, J. B., & Scott, J. W. (1991). Populations of Xanthomonas campestris pv. vesicatoria in lesions of susceptible and resistant tomato genotypes. Plant Disease, 75, 357–360.

    Article  Google Scholar 

  • Somodi, G. C., Jones, J. B., Scott, J. W., & Jones, J. P. (1994). Screening tomato seedlings for resistance to bacterial spot. HortScience, 29, 680–682.

    Google Scholar 

  • Sotirova, V., & Bogatsevska, N. (2000). Evaluation of tomato wild species for resistance to race T1 nad T3 of Xanthomonas vesicatoria. Acta Physiologiae Plantarum, 22, 256–259.

    Article  Google Scholar 

  • Stall, R. E., Jones, J. B., & Minsavage, G. V. (2009). Durability of resistance in tomato and pepper to Xanthomonads causing bacterial spot. Annual Review of Phytopathology, 47, 265–284.

    Article  PubMed  CAS  Google Scholar 

  • Sun, H. J., Zhang, J. Y., Wang, Y. Y., Scott, J. W., Francis, D. M., & Yang, W. C. (2011). QTL analysis of resistance to bacterial spot race T3 in tomato. Acta Horticulturae Sinica, 38, 2297–2308.

    CAS  Google Scholar 

  • van Deynze, A., Stoffel, K., Buell, C. R., Kozik, A., Liu, J., van der Knaap, E., & Francis, D. (2007). Diversity in conserved genes in tomato. BMC Genomics, 8, 465.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Z. X., Wang, Z. Q., & Wang, G. F. (2005). Integrative technologies for controlling bacterial spot in tomato. Northwest Horticulture, 7, 30.

    Google Scholar 

  • Wang, Y. Y., Chen, J., Francis, D. M., Shen, H. L., Wu, T. T., & Yang, W. C. (2010). Discovery of intron polymorphisms in cultivated tomato using both tomato and Arabidopsis genomic information. Theoretical and Applied Genetics, 121, 1199–1207.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Hutton, S. F., Robbins, M. D., Sim, S. C., Scott, J. W., Yang, W. C., Jones, J. B., & Francis, D. M. (2011). Molecular map** of hypersensitive resistance from tomato cv. Hawaii 7981 to Xanthomonas perforans race T3. Phytopathology, 101, 1217–1223.

    Article  PubMed  Google Scholar 

  • **e, W., Yu, K., Pauls, K. P., & Navabi, A. (2012). Application of image analysis in studies of quantitative disease resistance, exemplified using common bacterial blight-common bean pathosystem. Phytopathology, 102, 434–442.

    Article  PubMed  Google Scholar 

  • Yang, W. (2013). Recent advances on genetics and map** of resistance to bacterial spot in tomato. Acta Horticulturae Sinica, 40, 1731–1740.

    CAS  Google Scholar 

  • Yang, W., Sacks, E. J., Ivey, M. L., Miller, S. A., & Francis, D. M. (2005). Resistance in Lycopersicon esculentum intraspeciflc crosses to race T1 strains of Xanthomonas campestris pv. vesicatoria causing bacterial spot of tomato. Phytopathology, 95, 519–527.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W. C., Chen, J., Zhang, X. M., & Francis, D. M. (2007). Recent advances in classification of tomato bacterial spot pathogen, genetics of resistance, and marker-assisted selection. Scientia Agricultura Sinica, 40, 283–290.

    CAS  Google Scholar 

  • Zhang, Z. X. (Ed.). (2005). Vegetable cultivation. Bei**g, China: China Agricultural University Press.

    Google Scholar 

  • Zhang, X. M., Francis, D. M., & Yang, W. C. (2009). Evaluation of resistance to bacterial spot in varieties growing in China and marker-assisted selection. Acta Agriculturae Boreali-Sinica, 24(4), 183–187.

    Google Scholar 

  • Zhang, W. L., Wang, G. Y., Li, Q. S., & Yang, S. B. (2010). Recognization and prevention of tomato bactrerial diseases in greenhouse. China Agricltural Technology Extension, 26(2), 40–41.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. David M. Francis in the Department of Horticulture and Crop Science at the Ohio State University for providing the seeds of tomato lines and Dr. Jeffrey B. Jones in the Department of Plant Pathology at the University of Florida for providing race T3 of the bacterial spot pathogen. The authors also thank Dr. C.H. Bock for his critical comments and suggestions on manuscript revision. The work was partly supported by the National Natural Science Foundation of China (30972003), the Specialized Research Fund for the Doctoral Program of Higher Education (20110008110019) and the Bei**g Modern Agro-industry Technology Research System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wencai Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Wei, J., Zhang, J. et al. A comparison of disease severity measurements using image analysis and visual estimates using a category scale for genetic analysis of resistance to bacterial spot in tomato. Eur J Plant Pathol 139, 125–136 (2014). https://doi.org/10.1007/s10658-013-0371-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0371-8

Keywords

Navigation