Log in

Promotion of growth, health and stress tolerance of Styrian oil pumpkins by bacterial endophytes

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Substantial yield losses of Styrian oil pumpkin caused by the fungus Didymella bryoniae and bacterial pathogens were recently reported. Here we applied bacterial endophytes with a broad antagonistic activity to pumpkin plants by seed priming. Effects of the bacterial inoculants with and without chemical seed treatments on plant growth and health were evaluated during three different field trials in two consecutive years (2010 and 2011). Biological seed treatments strongly supported the germination of pumpkin seeds. In 2010, the germination of the biologically treated seeds was comparable to the rate following a chemical treatment; whilst in 2011 effects of biological seed treatments were more obvious, including an increased emergence rate up to 109 % by Serratia plymuthica S13. Furthermore, tolerance against desiccation stress was observed for Serratia as well as for Lysobacter gummosus L101 treatment. The biological treatment showed different effects against fungal diseases: no effect on fruit rot was observed, whereas powdery mildew could be significantly suppressed by Paenibacillus polymyxa PB71 and L. gummosus L101 in 2010. In addition, both strains led to reproducible increases in harvest yields. In this study, we found bacterial endophytes suitable as inoculants for plant growth promotion, biocontrol, as well as for enhancing stress tolerance in Styrian oil pumpkins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

cw:

calendar week

References

  • Babadoost, M., & Zitter, T. A. (2009). Fruit rots of pumpkin. Plant Disease, 93, 772–782.

    Article  Google Scholar 

  • Berg, G., & Hallmann, J. (2006). Control of plant pathogenic fungi with bacterial endophytes. In B. Schulz, C. Boyle, & T. Sieber (Eds.), Microbial root endophytes (pp. 53–70). Berlin: Springer.

    Chapter  Google Scholar 

  • Berg, G. (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84, 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Berg, G., Zachow, C., Cardinale, M., & Müller, H. (2009). Ecology and human pathogenicity of plant-associated bacteria. In R. U. Ehlers (Ed.), Regulation of biological control agents (pp. 175–189). Berlin: Springer.

    Google Scholar 

  • Compant, S., Duffy, B., Nowak, J., Clement, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–9.

    Article  PubMed  CAS  Google Scholar 

  • Dreikorn, K. (2002). The role of phytotherapy in treating lower urinary tract symptoms and benign prostatic hyperplasia. World Journal of Urology, 19, 426–35.

    PubMed  Google Scholar 

  • Fruehwirth, G. O., & Hermetter, A. (2007). Seeds and oil of the Styrian oil pumpkin: components and biological activities. European Journal of Lipid Science and Technology, 109, 1128–1140.

    Article  Google Scholar 

  • Fürnkranz, M., Lukesch, B., Muller, H., Huss, H., Grube, M., & Berg, G. (2012). Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microbial Ecology, 63, 418–28.

    Article  PubMed  Google Scholar 

  • Huss, H. (2007). Didymella bryoniae im Steirischen Ölkürbis: Neben Fruchtfäule auch Verursacher der Blattdürre. Der Pflanzenarzt, 60, 10–11.

    Google Scholar 

  • Huss, H., & Mavridis, A. (2007). Bakterium Pseudomonas viridiflava: Neue Blattfleckenkrankheit am Steirischen Ölkürbis. Der Pflanzenarzt, 60, 8–9.

    Google Scholar 

  • Huss, H., Winkler, J., & Greimel, C. (2007). Der Pilz Didymella bryoniae schädigt steirischen Ölkürbisanbau: Fruchtfäule statt Kernöl. Der Pflanzenarzt, 60, 14–16.

    Google Scholar 

  • Huss, H., Mavridis, A., & Eitzinger, J. (2009). Bakterien-Weichfäule bei Ölkürbis: Weiche Schale, keine Kerne. Der Pflanzenarzt, 14, 14–15.

    Google Scholar 

  • Huss, H., & Winkler, J. (2009). Neue virusbedingte Krankheitsbilder bei Ölkürbis: Gefährlich schön gescheckt. Der Pflanzenarzt, 62, 12–13.

    Google Scholar 

  • Huss, H. (2011). Krankheiten und Schädlinge im Ölkürbisbau. Der fortschrittliche Landwirt, 3, 30–33.

    Google Scholar 

  • Keinath, A. P. (2011). From native plants in Central Europe to cultivated crops worldwide: the emergence of Didymella bryoniae as a cucurbit pathogen. Hortscience, 46(4), 532–535.

    Google Scholar 

  • Koo, S. Y., & Cho, K. S. (2009). Isolation and characterization of a plant-growth-promoting rhizobacterium, Serratia sp. SY5. Journal of Microbiology and Biotechnology, 19, 1431–1438.

    PubMed  CAS  Google Scholar 

  • Lee, D.-H., Mathur, S. B., & Neergaard, P. (1984). Detection and location of seed-borne inoculum of Didymella bryoniae and its transmission in seedlings of cucumber and pumpkin. Journal of Phytopathology, 109, 301–308.

    Article  Google Scholar 

  • Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–56.

    Article  PubMed  CAS  Google Scholar 

  • Mei, C., & Flinn, B. S. (2010). The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Patents on Biotechnology, 4, 81–95.

    Article  PubMed  CAS  Google Scholar 

  • Müller, H., & Berg, G. (2008). Impact of formulation procedures on the effect of Serratia plymuthica on Verticillium wilt in oilseed rape. BioControl, 53, 905–916.

    Article  Google Scholar 

  • Müller, H., Westendorf, C., Leitner, E., Chernin, L., Riedel, K., Schmidt, S., et al. (2009). Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiology Ecology, 67, 468–78.

    Article  PubMed  Google Scholar 

  • Rademaker, J. L. W., & de Bruijn, F. J. (1997). Characterization and classification of microbes by REP-PCR genomic fingerprinting and computer-assisted pattern analysis. In G. Caetano-Anollés & P. M. Gresshoff (Eds.), DNA markers: protocols, applications and overviews (pp. 151–171). New York: Wiley.

    Google Scholar 

  • Reddy, M. S., Hynes, R. K., & Lazarovits, G. (1993). Relationship between in vitro growth inhibition of pathogens and suppression of preemergence dam**-off and postemergence root rot of white bean seedlings in the greenhouse by bacteria. Canadian Journal of Microbiology, 40, 113–119.

    Article  Google Scholar 

  • Sessitsch, A., Coenye, T., Sturz, A. V., Vandamme, P., Barka, E. A., Salles, J. F., et al. (2005). Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. International Journal of Systematic and Evolutionary Microbiology, 55, 1187–1192.

    Article  PubMed  CAS  Google Scholar 

  • Sitterly, W. R., & Keinath, A. P. (1996). Gummy stem blight. In T. A. Zitter, D. L. Hopkins, & C. E. Thomas (Eds.), Compendium of cucurbit diseases (pp. 27–28). St. Paul: American Phytological Society Press.

    Google Scholar 

  • Teppner, H. (2000). Cucurbita pepo (Cucurbitaceae) - history, seed coat types, thin coated seeds and their genetics. Phyton Annales Rei Botanicae, 40, 1–208.

    Google Scholar 

  • Trnka, M., Eitzinger, J., Dubrovský, M., Semerádová, D., Stepánek, P., Hlavinka, P., et al. (2010). Is rainfed crop production in central Europe at risk? Using a regional climate model to produce high resolution agroclimatic information for decision makers. Journal of Agricultural Science, 148, 639–656.

    Article  Google Scholar 

  • Weller, D. M., & Cook, R. J. (1983). Suppression of take-all of wheat by seed-treatment with fluorescent pseudomonads. Phytopathology, 73, 463–469.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Bernhard Stuphann and Christoph Hirschbauer (Alwera AG, Gleisdorf) for providing oil pumpkin seeds for field trials II and III. Furthermore, we wish to thank Christin Zachow (Graz) for assistance during the field work. The project was funded by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management and the government of the Federal State of Styria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fürnkranz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Electronic supplementary material (PDF 587 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fürnkranz, M., Adam, E., Müller, H. et al. Promotion of growth, health and stress tolerance of Styrian oil pumpkins by bacterial endophytes. Eur J Plant Pathol 134, 509–519 (2012). https://doi.org/10.1007/s10658-012-0033-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-0033-2

Keywords

Navigation