Log in

Effective removal of chromium by adsorption using Delonix regia bark derived activated carbon from aqueous solution: a sustainable approach

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This study introduces a new biosorbent derived from Delonix regia bark-activated carbon to efficiently remove Chromium Cr(VI) metal ions from aqueous systems. The biosorbent was synthesized from the bark powder of the plant species and chemically activated with phosphoric acid. The biosorbent was characterized using FTIR, SEM, and BET to determine its functional properties and structural morphology. The batch adsorption experiments examined the optimal conditions for Cr(VI) metal ion adsorption, identifying that the highest removal efficiency occurred at pH levels of 2. The ideal adsorbent dosage was determined to be 2.5 g/L, with equilibrium achieved at a contact time of 60 min at the optimal temperature of about 303 K for a Cr(VI) metal ion concentration of 20 mg/L. Various isotherm models were applied to the adsorption equilibrium values, revealing that the adsorbent had a maximum removal capacity of approximately 224.8 mg/g for Cr(VI) metal ions. The adsorption process of Cr(VI) on the DAC biosorbent was best described by the Freundlich isotherm, indicating multilayer adsorption. The kinetic data fit well with the pseudo-second-order model. Thermodynamic parameters suggested that the adsorption process was spontaneous, exothermic, and feasible across different temperatures. Furthermore, the desorption studies showed that the DAC biosorbent can easily be rejuvenated and utilized several cycles with high adsorption capacity. These findings indicate that the developed adsorbent is environmentally friendly and effective for removing Cr(VI) from water systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Asuquo, E. D., Martin, A. D., & Nzerem, P. (2018). Evaluation of Cd (II) ion removal from aqueous solution by a low-cost adsorbent prepared from white yam (Dioscorea rotundata) waste using batch sorption. Chem engineering, 2, 35.

    Google Scholar 

  • Aydına, S., Nura, H. M., Traorea, A. M., Yıldırımb, E., & Emik, S. (2021). Fixed bed column adsorption of vanadium from water using amino-functional polymeric adsorbent. Desalination and Water Treatment, 209, 280–288.

    Article  Google Scholar 

  • Baran, M. F., & Duz, M. Z. (2019). Removal of cadmium (II) in the aqueous solutions by biosorption of Bacillus Licheniformis isolated from soil in the area of Tigris River. International Journal of Environmental Analytical Chemistry, 101(4), 533–548.

    Article  Google Scholar 

  • Bayuo, J. (2021a). An extensive review on chromium(VI) removal using natural and agricultural wastes materials as alternative biosorbents. J Environ Health Sci Engineer, 19, 1193–1207.

    Article  CAS  Google Scholar 

  • Bayuo, J. (2021b). Decontamination of cadmium(II) from synthetic wastewater onto shea fruit shell biomass. Applied Water Science, 11, 84.

    Article  CAS  Google Scholar 

  • Bayuo, J., & Kelvin Mtei, M. R. (2022). A comprehensive review on the decontamination of lead(ii) from water and wastewater by low-cost biosorbents. RSC Advances., 18, 11233–11254.

    Article  Google Scholar 

  • Bayuo, J., Pelig-Ba, K. B., & Abukari, M. A. (2019). Adsorptive removal of chromium(VI) from aqueous solution unto groundnut shell. Applied Water Science, 9, 107.

    Article  Google Scholar 

  • Bayuo, J., Abukari, M. A., & Pelig-Ba, K. B. (2020a). Desorption of chromium(VI) and lead(II) ions and regeneration of the exhausted adsorbent. Applied Water Science, 10, 171.

    Article  CAS  Google Scholar 

  • Bayuo, J., Abukari, M. A., & Pelig-Ba, K. B. (2020b). Optimization using central composite design (CCD) of response surface methodology (RSM) for biosorption of hexavalent chromium from aqueous media. Applied Water Science, 10, 135.

    Article  CAS  Google Scholar 

  • Bayuo, J., Rwiza, M., & Mtei, K. (2022). Response surface optimization and modeling in heavy metal removal from wastewater—A critical review. Environmental Monitoring and Assessment, 194, 351.

    Article  Google Scholar 

  • Bayuo, J., Rwiza, M. J., Sillanpää, M., & Mtei, K. M. (2023). Removal of heavy metals from binary and multicomponent adsorption systems using various adsorbents–a systematic review. RSC advances, 13(19), 13052–13093.

    Article  CAS  Google Scholar 

  • Bayuo, J., Rwiza, M. J., & Mtei, K. M. (2023a). Optimization of divalent mercury removal from synthetic wastewater using desirability function in central composite design of response surface methodology. Journal of Environmental Health Science and Engineering. https://doi.org/10.1007/s40201-023-00888-5

    Article  Google Scholar 

  • Bayuo, J., Rwiza, M. J., & Mtei, K. M. (2023b). Adsorption and desorption ability of divalent mercury from an interactive bicomponent sorption system using hybrid granular activated carbon. Environmental Monitoring and Assessment, 195, 935.

    Article  CAS  Google Scholar 

  • Bayuo, J., Rwiza, M. J., & Mtei, K. M. (2023c). Non-competitive and competitive detoxification of As(III) ions from single and binary biosorption systems and biosorbent regeneration. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03734-0

    Article  Google Scholar 

  • Bayuo, J., Rwiza, M. J., Mtei, K. M., & Choi, J. W. (2024). Adsorptive removal of heavy metals from wastewater using low-cost adsorbents derived from agro-based materials. In N. Kumar (Ed.), Heavy metal remediation, earth and environmental sciences library (pp. 237–371). Springer.

    Chapter  Google Scholar 

  • Boubaker, H., Arfi, R. B., Mougin, K., Vaulot, C., Hajj, S., Kunneman, P., Schrodj, G., & Ghorbal, A. (2021). New optimization approach for successive cationic and anionic dyes uptake using reed-based beads. Journal of Cleaner Production, 307, 127218.

    Article  CAS  Google Scholar 

  • Bouras, H. D., Benturki, O., Bouras, N., Attou, M., Donnot, A., Merlin, A., Addoun, F., & Holtz, M. D. (2015). The use of an agricultural waste material from Ziziphus jujuba as a novel adsorbent for humic acid removal from aqueous solutions. Journal of Molecular Liquids, 211, 1039–1046.

    Article  CAS  Google Scholar 

  • Dulla, J. B., Tamana, M. R., Boddu, S., Pulipati, K., & Srirama, K. (2020). Biosorption of copper (II) onto spent biomass of Gelidiellaacerosa (brown marine algae): optimization and kinetic studies. Applied Water Science, 10, 56.

    Article  CAS  Google Scholar 

  • Eleryan, A., Aigbe, U. O., Ukhurebor, K. E., Onyancha, R. B., Eldeeb, T. M., El-Nemr, M. A., Hassaan, M. A., Ragab, S., Osibote, O. A., Kusuma, H. S., Darmokoesoemo, H., & El Nemr, A. (2022). Copper(II) ion removal by chemically and physically modified sawdust biochar. Biomass Conversion and Biorefinery, 14, 9283–9320.

    Article  Google Scholar 

  • Fakhar, N., Khan, S. A., Siddiqi, W. A., & Khan, T. A. (2021). Ziziphus jujube waste-derived biomass as cost-effective Adsorbent for the sequestration of of Cd2+ from aqueous solution: Isotherm and kinetics studies. Environmental Nanotechnology, Monitoring & Management, 16, 100570.

    Article  CAS  Google Scholar 

  • Femina Carolin, C., Senthil Kumar, P., Saravanan, A., Janet Joshiba, G., & Naushad, Mu. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 5(3), 2782–2799.

    Article  Google Scholar 

  • Feng-Chin, Wu., Tseng, R.-L., & Juang, R.-S. (2009). Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical Engineering Journal, 150(2–3), 366–373.

    Google Scholar 

  • Hong, J., **e, J., Mirshahghassemi, S., & Lead, J. (2020). Metal (Cu, Cr, Ni, Pb) removal from environmentally relevant waters using polyvinylpyrrolidone–coated magnetic nanoparticles. RSC Advances, 10, 3266–3276.

    Article  CAS  Google Scholar 

  • Hosseinzehi, M., Khatebasreh, M., & Dalvand, A. (2020). Modeling of Reactive Black 5 azo dye adsorption from aqueous solution on activated carbon prepared from poplar sawdust using response surface methodology. International Journal of Environmental Analytical Chemistry, 102, 6970–6987.

    Article  Google Scholar 

  • Jan, S. U., Ahmad, A., Khan, A. A., Melhi, S., Ahmad, I., Sun, G., Chen, C.-M., & Ahmad, R. (2021). Removal of azo dye from aqueous solution by a low-cost activated carbon prepared from coal: Adsorption kinetics, isotherms study, and DFT simulation. Environmental Science and Pollution Research, 28, 10234–10247.

    Article  CAS  Google Scholar 

  • Janet Joshiba, G., Senthil Kumar, P., Govarthanan, M., Tsopbou Ngueagni, P., Abilarasu, A., & Femina Carolin, C. (2021). Investigation of magnetic silica nanocomposite immobilized Pseudomonas fluorescens as a biosorbent for the effective sequestration of Rhodamine B from aqueous systems. Environmental Pollution, 269, 116173.

    Article  Google Scholar 

  • Ji, Li., **e, S., Feng, J., Li, Y., & Chen, Le. (2012). Heavy metal uptake capacities by the common freshwater green alga Cladophora fracta. Journal of Applied Psychology, 24, 979–983.

    CAS  Google Scholar 

  • Katiyar, R., Patel, A. K., Nguyen, T.-B., Singhania, R. R., Chen, C.-W., & Dong, C.-D. (2021). Adsorption of copper (II) in aqueous solution using biochars derived from Ascophyllum nodosum seaweed. Bioresource Technology, 328, 124829.

    Article  CAS  Google Scholar 

  • Khalid, M. W., & Salman, S. D. (2019). Adsorption of heavy metals from aqueous solution onto sawdust activated carbon. Al-Khwarizmi Engineering Journal, 15(3), 60–69.

    Article  Google Scholar 

  • Khan, T. A., Noumana, Md., Dua, D., Khan, S. A., & Alharthi, S. S. (2022). Adsorptive scavenging of cationic dyes from aquatic phase by H3PO4 activated Indian jujube (Ziziphus mauritiana) seeds based activated carbon: Isotherm, kinetics, and thermodynamic study. Journal of Saudi Chemical Society, 26(2), 101417.

    Article  CAS  Google Scholar 

  • Kołodyńska, D., Bąk, J., & Thomas, P. (2016). Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chemical Engineering Journal, 307, 353–363.

    Article  Google Scholar 

  • Kumar, R., Sharma, P., Rose, P. K., Sahoo, P. K., Bhattacharya, P., Pandey, A., & Kumar, M. (2023). Co-transport and deposition of fluoride using rice husk-derived biochar in saturated porous media: Effect of solution chemistry and surface properties. Environmental Technology & Innovation, 30, 103056.

    Article  CAS  Google Scholar 

  • Kumar, R., Sharma, P., Sharma, P. K., Rose, P. K., Singh, R. K., Kumar, N., Sahoo, P. K., Maity, J. P., Ghosh, A., Kumar, M., Bhattacharya, P., & Pandey, A. (2023). Rice husk biochar-A novel engineered bio-based material for transforming groundwater-mediated fluoride cycling in natural environments. Journal of Environmental Management, 343, 118222.

    Article  CAS  Google Scholar 

  • LabiedOumessaadBenturki, R., Adh’ Ya Eddine, H., & Andre´, D. (2018). Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): Kinetic, equilibrium, and thermodynamic study. Adsorption Science and Technology, 36(3–4), 1066–1099.

    Google Scholar 

  • Ma, X., Liu, Y., Zhang, Q., Sun, S., Zhou, X., & Yong, Xu. (2022). A novel natural lignocellulosic biosorbent of sunflower stem-pith for textile cationic dyes adsorption. Journal of Cleaner Production, 331, 129878.

    Article  CAS  Google Scholar 

  • Malima, N., Owonubi, S. J., Lugwisha, E. H., & Mwakaboko, A. S. (2021). Thermodynamic, isothermal and kinetic studies of heavy metals adsorption by chemically modified Tanzanian Malangali kaolin clay. International Journal of Environmental Science and Technology, 18(10), 1–16.

    Article  Google Scholar 

  • Manjuladevi, M., Anitha, R., & Manonmani, S. (2018). Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from cucumis melo peel. Applied Water Science, 8, 36.

    Article  Google Scholar 

  • Mwandira, W., Nakashima, K., Kawasaki, S., Arabelo, A., Banda, K., Nyambe, I., Chirwa, M., Ito, M., Sato, T., Igarashi, T., Nakata, H., Nakayama, S., & Ishizuka, M. (2020). Biosorption of Pb(II) and Zn(II) from aqueous solution by Oceanobacillus isolated from an abandoned mine. Scientific Reports, 10, 21189.

    Article  CAS  Google Scholar 

  • Obulapuram, P. K., Arfin, T., Mohammad, F., Khiste, S. K., Chavali, M., Albalawi, A. N., & Al-Lohedan, H. A. (2021). Adsorption, Equilibrium Isotherm, and Thermodynamic Studies towards the removal of reactive orange 16 dye using Cu(I)-polyaninile composite. Polymers, 13(20), 3490.

    Article  CAS  Google Scholar 

  • Ouyang, D., Zhuo, Y., Liang, Hu., Zeng, Q., Yuehua, Hu., & He, Z. (2019). Research on the adsorption behaviour of heavy metal ions by porous material prepared with silicate tailings. Minerals., 9, 291.

    Article  CAS  Google Scholar 

  • Priya, A. K., Yogeshwaran, V., Rajendran, S., Hoang, T. K. A., Soto-Moscoso, M., Ghfar, A. A., & Bathula, C. (2022). Investigation of mechanism of heavy metals (Cr6+, Pb2+& Zn2+) adsorption from aqueous medium using rice husk ash: Kinetic and thermodynamic approach. Chemosphere, 286, 131796.

    Article  CAS  Google Scholar 

  • Priya, A. K., Yogeshwaran, V., Rajendran, S., Hoang, T. K. A., Soto-Moscoso, M., Ghfar, A. A., & Bathula, C. (2022). Investigation of mechanism of heavy metals (Cr6+, Pb2+& Zn2+) adsorption from aqueous medium using rice husk ash: Kinetic and thermodynamic approach. Chemosphere, 286(3), 131796.

    Article  CAS  Google Scholar 

  • Regti, A., Laamari, M. R., Stiriba, S.-E., & El Haddad, M. (2017). The potential use of activated carbon prepared from Ziziphusspecies for removing dyes from waste waters. Applied Water Science, 7, 4099–4108.

    Article  CAS  Google Scholar 

  • Rose, P. K., Kumar, R., Kumar, R., Kumar, M., & Sharma, P. (2023). Congo red dye adsorption onto cationic amino-modified walnut shell: Characterization, RSM optimization, isotherms, kinetics, and mechanism studies. Groundwater for Sustainable Development, 21, 100931.

    Article  Google Scholar 

  • Rose, P. K., Poonia, V., Kumar, R., Kataria, N., Sharma, P., Lamba, J., & Bhattacharya, P. (2023). Congo red dye removal using modified banana leaves: Adsorption equilibrium, kinetics, and reusability analysis. Groundwater for Sustainable Development, 23, 101005.

    Article  Google Scholar 

  • Saeed, M. M., & Ahmed, M. (2020). Effect of temperature on kinetics and adsorption profile of endothermic chemisorption process: –Tm (III)–PAN loaded PUF system. Separation Science and Technology, 41, 705–722.

    Article  Google Scholar 

  • Samadani Langeroodi, N., Farhadravesh, Z., & Dehno Khalaji, A. (2018). Optimization of adsorption parameters for Fe (III) ions removal from aqueous solutions by transition metal oxide nanocomposite. Green Chemistry Letters and Reviews, 11(4), 404–413.

    Article  Google Scholar 

  • Saruchia, & Kumar, V. (2019). Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb+2 ions from aqueous solutions by a hybrid ion-exchanger. Arabian Journal of Chemistry, 12(3), 316–329.

    Article  Google Scholar 

  • Senthil Kumar, P., Janet Joshiba, G., Carolin, C., Femina, P Varshini, Priyadharshini, S., Arun Karthick, M. S., & Jothirani, R. (2019). A critical review on recent developments in the low-cost adsorption of dyes from wastewater. Desalination and Water Treatment, 172, 395–416.

    Article  Google Scholar 

  • SingjanusongPhuengphai, T. P., Kheangkhun, N., & Wattanakornsiri, A. (2021). Removal of copper (II) from aqueous solution using chemically modified fruit peels as efficient low-cost biosorbents. Water Science and Engineering, 14(4), 286–294.

    Article  Google Scholar 

  • Sirusbakht, S., Vafajoo, L., Soltani, S., & Habibi, S. (2018). Sawdust bio sorption of chromium (VI) Ions from aqueous solutions. Chemical Engineering Transactions, 70, 1147–1152.

    Google Scholar 

  • Velumsamy, S., Roy, A., Sundaram, S., & Mallick, T. K. (2021). A review on heavy metal ions andcontaining dyes removal throughgraphene oxide-based adsorptionstrategies for textile wastewatertreatment. The Chemical Record, 21, 1–42.

    Google Scholar 

  • Venkatraman, Y., & Ak, P. (2021). Desalination and water treatment experimental studies on the removal of heavy metal ion concentration using sugarcane bagasse in batch adsorption process. Desalination and Water Treatment., 224, 256–272.

    Article  Google Scholar 

  • Venkatraman, Y., & Priya, A. K. (2021). Removal of heavy metal ion concentrations from the wastewater using tobacco leaves coated with iron oxide nanoparticles. International Journal of Environmental Science and Technology, 19, 2721–2736.

    Article  Google Scholar 

  • Venkatraman, Y., Arunkumar, P., Kumar, N. S., Osman, A. I., Muthiah, M., Al-Fatesh, A. S., & Koduru, J. R. (2023). Exploring modified rice straw biochar as a sustainable solution for simultaneous Cr(VI) and Pb(II) removal from wastewater: Characterization. Mechanism Insights, and Application Feasibility, ACS Omega., 8(41), 38130–38147.

    CAS  Google Scholar 

  • Viscusi, G., Napolitano, F., & Gorrasi, G. (2024). Modified hemp fibers as a novel and green adsorbent for organic dye adsorption: Adsorption, kinetic studies and modeling. Euro-Mediterr J Environ Integr, 9, 591–604.

    Article  Google Scholar 

  • **, L., Zhou, S., Zhang, C., Zhuan, Fu., Wang, A., Zhang, Q., Wang, Y., Liu, X., Wang, X., & Xua, W. (2020). Environment-friendly Juncus effusus-based adsorbent with a three-dimensional network structure for highly efficient removal of dyes from wastewater. Journal of Cleaner Production, 259, 120812.

    Article  Google Scholar 

  • Yogeshwaran, V., & Priya, A. K. (2021). Experimental studies on the removal of heavy metal ion concentration using sugarcane bagasse in batch adsorption process. Desalination and Water Treatment, 224, 256–272.

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Janet Joshiba Ganesan: Conceptualization; Investigation; Methodology; Writing – original research P. Senthil Kumar, Jia-Ren Chang Chien: Conceptualization; Methodology; Validation; Supervision Hemavathi Sundaram, Hariharan Thangappan, Aravindan Achuthan, Sivarethinamohan Rajamanickam, Gayathri Rangasamy: Formal Analysis; Visualization; Data Curation; Visualization

Corresponding authors

Correspondence to Chia-Shang Chang Chien or P. Senthil Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesan, J.J., Chien, CS.C., Kumar, P.S. et al. Effective removal of chromium by adsorption using Delonix regia bark derived activated carbon from aqueous solution: a sustainable approach. Environ Geochem Health 46, 308 (2024). https://doi.org/10.1007/s10653-024-02093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-02093-1

Keywords

Navigation