Log in

Sustainable approach for the expulsion of metaldehyde: risk, interactions, and mitigation: a review

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

All pests can be eliminated with the help of pesticides, which can be either natural or synthetic. Because of the excessive use of pesticides, it is harmful to both ecology and people's health. Pesticides are categorised according to several criteria: their chemical composition, method of action, effects, timing of use, source of manufacture, and formulations. Many aquatic animals, birds, and critters live in danger owing to hazardous pesticides. Metaldehyde is available in various forms and causes significant impact even when small amounts are ingested. Metaldehyde can harm wildlife, including dogs, cats, and birds. This review discusses pesticides, their types and potential environmental issues, and metaldehyde's long-term effects. In addition, it examines ways to eliminate metaldehyde from the aquatic ecosystem before concluding by anticipating how pesticides may affect society. The metal–organic framework and other biosorbents have been appropriately synthesized and subsequently represent the amazing removal of pesticides from effluent as an enhanced adsorbent, such as magnetic nano adsorbents. A revision of the risk assessment for metaldehyde residuals in aqueous sources is also attempted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

WHO:

World Health Organization

IARC:

International Agency for Research on Cancer

EFSA:

European Food Safety Authority

LD50:

Lethal dosage 50

LC50:

Lethal concentration 50

UNEP:

United Nations Environment Programme

PCBs:

Polychlorinated biphenyls

DNMTs:

DNA methyltransferases

DNA:

Deoxyribonucleic acid

DDT:

Dichlorodiphenyltrichloroethane

LC:

Liquid chromatography

MS/MS:

Triple quadrupole mass spectrometry

GC:

Gas chromatography

MS:

Mass spectrometry

SPE:

Solid-phase extraction

FAIMS:

Field asymmetric ion mobility spectrometry

MOF:

Metal organic framework

SBU:

Secondary building units

ESI:

Electrostatic attractions

DUR:

Diuron

GO:

Graphene oxide

HPI:

Hydrophobic interactions

M-M-ZIF-8:

Magnetic hybrid composite

AOPs:

Advanced oxidation processes

OPP:

Organophosphorus pesticides

DBP:

Decontamination byproducts

BPS:

Biological purified systems

CPO:

Chloroperoxidase

EQS:

Environmental quality standards

EPA:

Environmental protection agency

MBR:

Membrane bioreactor

References

  • Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Thomaidis, N. S., & Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. Journal of Hazardous Materials, 323, 274–298. https://doi.org/10.1016/j.jhazmat.2016.04.045

    Article  CAS  Google Scholar 

  • Ahmad, S., & Yasin, K. (2018). Removal of organic pollutants by using surfactant modified bentonite. Journal Chemistry Social Pakistan, 40(3), 447–456.

  • Akashe, M. (2018). Classfication of pesticides: A review international. Journal of Research in Ayurveda and Pharmacy, 9(4), 144–150. https://doi.org/10.7897/2277-4343.094131

  • Alewu, B., & Nosiri, C. (2011). Pesticides and human health. Pesticides in the modern world–effects of pesticides exposure. INTECH, 12, 231–250.

    Google Scholar 

  • Al-Ghouti, M. A., & Daana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383

    Article  CAS  Google Scholar 

  • Ariffin, N., Abdullah, M. M., Zainol, M. R., Murshed, M. F., Faris, M. A., & Bayuaji, R. (2017). Review on Adsorption of heavy metal in wastewater by using Geopolymer. MATEC Web of Conferences, 97, 1023. https://doi.org/10.1051/matecconf/20179701023

    Article  CAS  Google Scholar 

  • Aswathi, A., Pandey, A., & Sukumaran, R. K. (2019). Rapid degradation of the organophosphate pesticide–chlorpyrifos by a novel strain of Pseudomonas nitroreducens AR-3. Bioresource Technology, 292, 122025. https://doi.org/10.1016/j.biortech.2019.122025

    Article  CAS  Google Scholar 

  • Bayramoglu, G., & Arica, M. Y. (2019). Biodegradation of methylene blue and carbaryl by Trametes versicolor laccase preparations in the presence of a mediator compound. Journal of Macromolecular Science Part A, 56, 277–290. https://doi.org/10.1080/10601325.2019.1565549

    Article  CAS  Google Scholar 

  • Bhagyashree, T., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R. D., & Buelna, G. (2017). Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource Technology, 224, 1–12. https://doi.org/10.1016/j.biortech.2016.11.042

    Article  CAS  Google Scholar 

  • Blaznik, U., Yngve, A., Erzen, I., & Hlastan Ribic, C. (2015). Consumption of fruits and vegetables and probabilistic assessment of the cumulative acute exposure to organophosphorus and carbamate pesticides of schoolchildren in Slovenia. Public Health Nutrition, 19, 557–563. https://doi.org/10.1017/S1368980015001494

    Article  Google Scholar 

  • Boutin, C., Strandberg, B., Carpenter, D., Mathiassen, S. K., & Thomas, P. J. (2014). Herbicide impact on non-target plant reproduction: What are the toxicological and ecological implications? Environmental Pollution, 185, 295–306. https://doi.org/10.1016/j.envpol.2013.10.009

    Article  CAS  Google Scholar 

  • Burtscher-Schaden, H., Durstberger, T., & Zaller, J. G. (2022). Toxicological comparison of pesticide active substances approved for conventional vs. Organic Agriculture in Europe Toxics, 10(12), 753. https://doi.org/10.3390/toxics10120753

    Article  CAS  Google Scholar 

  • Buscail, C., Chevrier, C., Serrano, T., Pele, F., Monfort, C., Cordier, S., & Viel, J. F. (2015). Prenatal pesticide exposure and otitis media during early childhood in the PELAGIE mother-child cohort. Occupational and Environmental Medicine, 72, 837–844. https://doi.org/10.1136/oemed-2015-103039

    Article  Google Scholar 

  • Busquets, R., Kozynchenko, O. P., Whitby, R. L. D., Tennison, S. R., & Cundy, A. B. (2014). Phenolic carbon tailored for the removal of polar organic contaminants from water: A solution to the metaldehyde problem? Water Research, 61, 46–56.

    Article  CAS  Google Scholar 

  • Butova, V. V., Soldatov, M. A., Guda, A. A., Lomachenko, K. A., & Lamberti, C. (2016). Metal-organic frameworks: Structure, properties, methods of synthesis and characterisation. Russian Chemical Reviews, 85, 280–307. https://doi.org/10.1070/RCR4554

    Article  CAS  Google Scholar 

  • Carletti, L., Botondi, R., Moscetti, R., Stella, E., Monarca, D., Cecchini, M., & Massantini, R. (2013). Use of ozone in sanitation and storage of fresh fruits and vegetables. Journal of Food, Agriculture and Environment, 11(3–4), 585–589.

    CAS  Google Scholar 

  • Carvalho, F. P. (2017). Pesticides, environment and food safety. Food and Energy Security, 6, 48–60. https://doi.org/10.1002/fes3.108

    Article  Google Scholar 

  • Castle, G. D., Mills, G. A., Gravell, A., Jones, L., Townsend, I., Cameron, D. G., & Fones, G. R. (2017). Review of the molluscicide metaldehyde in the environment. Environmental Science Water Research Technology, 3, 415–428.

    Article  CAS  Google Scholar 

  • Chourasiya, S., Khillare, P. S., & Jyethi, D. S. (2015). Health risk assessment of organochlorine pesticide exposure through dietary intake of vegetables grown in the periurban sites of Delhi, India. Environ Science Pollution Research International, 22, 5793–5806. https://doi.org/10.1007/s11356-014-3791-x

    Article  CAS  Google Scholar 

  • Cimino, A. M., Boyles, A. L., Thayer, K. A., & Perry, M. J. (2017). Effects of neonicotinoid pesticide exposure on human health: A systematic review. Environmental Health Perspectives., 125, 155–162. https://doi.org/10.1289/EHP515

    Article  CAS  Google Scholar 

  • Dai, J., **ao, X., Duan, S., Liu, J., He, J., Lei, J., & Wang, L. (2018). Synthesis of novel microporous nanocomposites of ZIF-8 on multi-walled carbon nanotubes for adsorptive removing benzoic acid from water. Chemical Engineering Journal, 331, 64–74. https://doi.org/10.1016/j.cej.2017.08.090

    Article  CAS  Google Scholar 

  • Damalas, C. A., & Koutroubas, S. D. (2016). Farmers’ exposure to pesticides: Toxicity types and ways of prevention. Toxics, 4(1), 1. https://doi.org/10.3390/toxics4010001

    Article  Google Scholar 

  • Dan, F., & Yan, X. (2018). Comparisons of glyphosate adsorption properties of different functional Cr-based metal–organic frameworks. Journal of Separation Science, 41, 732–739. https://doi.org/10.1002/jssc.201700886

    Article  CAS  Google Scholar 

  • de Almeida Lopes, T. S., Hessler, R., Bohner, C., Junior, G. B., & de Sena, R. F. (2020). Pesticides removal from industrial wastewater by a membrane bioreactor and post-treatment with either activated carbon, reverse osmosis or ozonation. Journal of Environmental Chemical Engineering., 8(6), 104538. https://doi.org/10.1016/j.jece.2020.104538

    Article  CAS  Google Scholar 

  • de Milina, O., Breno, E. F. F., Jannaina, V., Fernando, J. M. M. F., Priscila, S. C., & Ludovico, M. (2020). Pharmaceuticals residues and xenobiotics contaminants: Occurrence, analytical techniques and sustainable alternatives for wastewater treatment. Science of the Total Environment, 705, 135568. https://doi.org/10.1016/j.scitotenv.2019.135568

    Article  CAS  Google Scholar 

  • de Souza, L. P., Faroni, L. R., Heleno, F. F., Pinto, F. G., de Queiroz, M. E., & Prates, L. H. (2018). Ozone treatment for pesticide removal from carrots: Optimization by response surface methodology. Food Chemistry, 15(243), 435–441.

    Article  Google Scholar 

  • Deepak, R., Nitasha, K., Sanjiv, T., & Gaurav, P. (2018). Nanotechnology-based recent approaches for sensing and remediation of pesticides. Journal of Environmental Management, 206, 749–762. https://doi.org/10.1016/j.jenvman.2017.11.037

    Article  CAS  Google Scholar 

  • Fytory, M., Mansour, A., El Rouby, W. M., Farghali, A. A., Zhang, X., Bier, F., Abdel-Hafiez, M., & El-Sherbiny, I. M. (2023). Core-shell nanostructured drug delivery platform based on biocompatible metal-organic framework-ligated polyethyleneimine for targeted hepatocellular carcinoma therapy. ACS Omega, 8(23), 20779–20791.

    Article  CAS  Google Scholar 

  • Gaoli, H., Liu, Qi., Zhou, Yi., Yan, W., Sun, Y., Peng, S., Zhao, C., Zhou, X., & Deng, H. (2023). Extremely large 3D cages in metal-organic frameworks for nucleic acid extraction. Journal of the American Chemical Society, 145, 13181–13190. https://doi.org/10.1021/jacs.3c02128

    Article  CAS  Google Scholar 

  • Garba, Z. N., Lawan, I., Zhou, W., Zhang, M., Wang, L., & Yuan, Z. (2020a). Microcrystalline cellulose (MCC) based materials as emerging adsorbents for the removal of dyes and heavy metals—a review. Science of the Total Environment, 717, 135070. https://doi.org/10.1016/j.scitotenv.2019.135070

    Article  CAS  Google Scholar 

  • Garba, Z. N., **ao, W., Zhou, W., Lawan, I., Jiang, Y., Zhang, M., & Yuan, Z. (2019). Process optimisation and synthesis of lanthanum-cobalt perovskite type nanoparticles (LaCoO3) prepared by modified proteic method: Application of response surface methodology. Korean Journal of Chemical Engineering, 36, 1826–1835. https://doi.org/10.1007/s11814-019-0400-1

    Article  CAS  Google Scholar 

  • Garba, Z. N., Zhou, W., Zhang, M., & Yuan, Z. (2020b). A review on the preparation, characterisation and potential application of perovskites as adsorbents for wastewater treatment. Chemosphere, 244, 125474. https://doi.org/10.1016/j.chemosphere.2019.125474

    Article  CAS  Google Scholar 

  • Geed, S. R., Prasad, S., Kureel, M. K., Singh, R. S., & Rai, B. N. (2018). Biodegradation of wastewater in alternating aerobic-anoxic lab scale pilot plant by Alcaligenes sp. S3 isolated from agricultural field. Journal of Environmental Management, 214, 408–420. https://doi.org/10.1016/j.jenvman.2018.03.031

    Article  CAS  Google Scholar 

  • Geed, S. R., Shirame, S. R., Singh, R. S., & Rai, B. N. (2017). Assessment of pesticides removal using two-stage Integrated Aerobic Treatment Plant (IATP) by Bacillus sp. isolated from agricultural field. Bioresource Technology, 242, 45–57. https://doi.org/10.1016/j.biortech.2017.03.080

    Article  CAS  Google Scholar 

  • Gege, W., Ma, J., Li, S., Wang, S., Jiang, Bo., Luo, S., Li, J., Wang, X., Guan, Y., & Chen, L. (2020). Cationic metal-organic frameworks as an efficient adsorbent for the removal of 2, 4-dichlorophenoxyacetic acid from aqueous solutions. Environmental Research, 186, 109542. https://doi.org/10.1016/j.envres.2020.109542

    Article  CAS  Google Scholar 

  • Ghani, U. R., Tahir, M., Goh, P. S., Ismail, A. F., & Khan, I. U. (2019). Controlled synthesis of reduced graphene oxide supported magnetically separable Fe3O4@rGO@AgI ternary nanocomposite for enhanced photocatalytic degradation of phenol. Powder Technology, 356, 547–560. https://doi.org/10.1016/j.powtec.2019.08.026

    Article  CAS  Google Scholar 

  • Głowacki, M., & Ciesielczuk, T. (2014). Assessment of pahs and selected pesticides in shallow groundwater in the highest protected areas in the opole region, Poland. Journal of Ecological Engineering, 15, 17–25. https://doi.org/10.12911/22998993.1094974

    Article  Google Scholar 

  • Golia, E. E., Papadimou, S. G., Cavalaris, C., & Tsiropoulos, N. G. (2021). Level of contamination assessment of potentially toxic elements in the urban soils of volos city (central greece). Sustainability, 13(4), 2029. https://doi.org/10.3390/su13042029

  • Goswami, L., Kumar, R. V., Borah, S. N., Manikandan, N. A., Pakshirajan, K., & Pugazhenthi, G. (2018). Membrane bioreactor and integrated membrane bioreactor systems for micropollutant removal from wastewater: A review. Journal of Water Process Engineering, 26, 314–325. https://doi.org/10.1016/j.jwpe.2018.10.024

    Article  Google Scholar 

  • Goulson, D. (2014). Ecology: Pesticides linked to bird declines. Nature, 511, 295–304. https://doi.org/10.1038/nature13642

    Article  CAS  Google Scholar 

  • Grotowska, M., Janda, K., & Jakubczyk, K. (2018). Effect of pesticides on human health. Pomeranian Journal of Life Science, 64, 42–54.

    Google Scholar 

  • Grung, M., Lin, Y., Zhang, H., Steen, A. O., Huang, J., Zhang, G., & Larssen, T. (2015). Pesticide levels and environmental risk in aquatic environments in China-a review. Environment International, 81, 87–97. https://doi.org/10.1016/j.envint.2015.04.013

    Article  CAS  Google Scholar 

  • Guangyang, L., Lingyun, L., Donghui, X., **aodong, H., **aomin, X., Shuning, Z., Yanguo, Z., & Huan, L. (2017). Metal–organic framework preparation using magnetic graphene oxide–β-cyclodextrin for neonicotinoid pesticide adsorption and removal. Carbohydrate Polymers, 175, 584–593. https://doi.org/10.1016/j.carbpol.2017.06.074

    Article  CAS  Google Scholar 

  • Gulino, A. (2013). Structural and electronic characterisation of self-assembled molecular nanoarchitectures by X-ray photoelectron spectroscopy. Analytical and Bioanalytical Chemistry, 405, 1479–1491. https://doi.org/10.1007/s00216-012-6394-8

    Article  CAS  Google Scholar 

  • Hassaan, A. M., & Nemr, A. E. (2020). Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egyptian Journal of Aquatic Research., 46(3), 207–220. https://doi.org/10.1016/j.ejar.2020.08.007

    Article  Google Scholar 

  • Hector, C., Redondo, D., Remón, S., Venturini, M. E., & Arias, E. (2019). Efficacy of electrolysed water, chlorine dioxide and photocatalysis for disinfection and removal of pesticide residues from stone fruit. Postharvest Biology and Technology, 148, 22–30. https://doi.org/10.1016/j.postharvbio.2018.10.009

    Article  CAS  Google Scholar 

  • Hessamaddin, S., Shahin, G., Sama, S., Mir, R. M., Amir, R., Yeojoon, Y., & Alireza, K. (2023). Metal-organic framework-based biosensing platforms for the sensitive determination of trace elements and heavy metals: A comprehensive review. Industrial Engineering Chemistry Research, 62, 4611–4627. https://doi.org/10.1021/acs.iecr.2c03011

    Article  CAS  Google Scholar 

  • Hui, W., Yun-Guo, L., Guang-ming, Z., **njiang, H., **, H., Ting-ting, L., Hua-Ying, L., Ya-qin, W., & Lu-Hua, J. (2014). Grafting of β-cyclodextrin to magnetic graphene oxide via ethylenediamine and application for Cr(VI) removal. Carbohydrate Polymers, 113, 166–178. https://doi.org/10.1016/j.carbpol.2014.07.014

    Article  CAS  Google Scholar 

  • Ignatowicz, K. (2011). Metals content chosen for environmental component monitoring in graveyards. Fresenius Environmental Bulletin, 20, 270.

    CAS  Google Scholar 

  • Irene, C., Javier, F. L., Olivier, A., James, R. B., & Peter, J. (2019). Disinfection byproduct formation during UV/Chlorine treatment of pesticides in a novel UV-LED reactor at 285 nm and the mitigation impact of GAC treatment. Science of the Total Environment, 712, 136413. https://doi.org/10.1016/j.scitotenv.2019.136413

    Article  CAS  Google Scholar 

  • Jacob, F. K., Aleksandra, S., Zhong, Z., & Mitch, W. A. (2020). Efficacy of ozone for removal of pesticides, metals and indicator virus from reverse osmosis concentrates generated during potable reuse of municipal wastewaters. Water Research, 176, 115744. https://doi.org/10.1016/j.watres.2020.115744

    Article  CAS  Google Scholar 

  • Jeevitha, D., & Amarnath, K. (2013). Chitosan/PLA nanoparticles as a novel carrier for the delivery of anthraquinone: synthesis, characterisation and in vitro cytotoxicity evaluation. Colloids and Surfaces B Biointerfaces., 101, 126–140. https://doi.org/10.1016/j.colsurfb.2012.06.019

    Article  CAS  Google Scholar 

  • Jia, W., Yan, C., Atawula, T., Jide, W., & Bin, W. (2018). Degradation of pesticide residues by gaseous chlorine dioxide on table grapes. Postharvest Biology and Technology, 137, 142–150. https://doi.org/10.1016/j.postharvbio.2017.12.001

    Article  CAS  Google Scholar 

  • Jude, M., Keith, B., & Kelly, G. B. (2013). Toxicologic Information Resources. Small Animal Toxicology, 21, 451–465. https://doi.org/10.1016/B978-1-4557-0717-1.00003-X

    Article  Google Scholar 

  • Kamyab, H., Chelliapan, S., Tavakkoli, O., Mesbah, M., Bhutto, J. K., Khademi, T., Kirpichnikova, I., Ahmad, A., Johani, A. L., & A.A. (2022). A review on carbon-based molecularly-imprinted polymers (CBMIP) for detection of hazardous pollutants in aqueous solutions. Chemosphere, 308(3), 136471. https://doi.org/10.1016/j.chemosphere.2022.136471

    Article  CAS  Google Scholar 

  • Kanaujiya, D. K., Paul, T., Sinharoy, A., & Pakshirajan, K. (2019). Biological treatment processes for the removal of organic micropollutants from wastewater: A review. Current Pollution Reports, 5, 112–121. https://doi.org/10.1007/s40726-019-00110-x

    Article  Google Scholar 

  • Kaur, R., Mavi, G. K., & Raghav, S. (2019). Pesticides Classification and its Impact on Environment. International Journal of Current Microbiology and Applied Sciences, 8(3), 1889–1897. https://doi.org/10.20546/ijcmas.2019.803.224

    Article  CAS  Google Scholar 

  • Kay, P., & Grayson, R. (2014). Using water industry data to assess the metaldehyde pollution. Water and Environment Journal, 28, 410–417.

    Article  CAS  Google Scholar 

  • Keighley, N., Ramwell, C., Sinclair, C., & Werner, D. (2021). Highly variable soil dissipation of metaldehyde can explain its environmental persistence and mobility. Chemosphere, 283, 131165. https://doi.org/10.1016/j.chemosphere.2021.131

    Article  CAS  Google Scholar 

  • Kida, M., Ziembowicz, S., & Koszelnik, P. (2018). Removal of organochlorine pesticides (OCPs) from aqueous solutions using hydrogen peroxide ultrasonic waves and a hybrid process. Separation and Purification Technology, 192, 457–464. https://doi.org/10.1016/j.seppur.2017.10.046

  • Korkmaz, V., Güngördü, A., & Ozmen, M. (2018). Comparative evaluation of toxicological effects and recovery patterns in zebrafish (Danio rerio) after exposure to phosalone-based and cypermethrin-based pesticides. Ecotoxicology and Environmental Safety, 160, 265–276. https://doi.org/10.1016/j.ecoenv.2018.05.055

    Article  CAS  Google Scholar 

  • Korrani, Z. S., Khalili, E., Kamyab, H., Ibrahim, W. A. W., & Hashim, H. (2023). A new solid phase extraction sorbent developed based on cyanopropyl functionalized silica nanoparticles for organophosphorus pesticides determination. Environmental Research 238 Part, 2, 117167. https://doi.org/10.1016/j.envres.2023.117167

    Article  CAS  Google Scholar 

  • Kupski, L., Salcedo, G. M., Caldas, S. S., de Souza, T. D., Furlong, E. B., & Primel, E. G. (2019). Optimization of a laccase-mediator system with natural redox-mediating compounds for pesticide removal. Environmental Science and PollutIon Research, 26, 5131–5143. https://doi.org/10.1007/s11356-018-4010-y

    Article  CAS  Google Scholar 

  • Kwiatkowska, M., Jarosiewicz, P., & Bukowska, B. (2012). Glifosat toksyczność, Narażenie zawodowe. Medycyna Pracy, 64, 717–730.

    Google Scholar 

  • Laxiang, Y., & Zhenhua, Z. (2019). Degradation of six typical pesticides in water by VUV/UV/chlorine process: Evaluation of the synergistic effect. Water Research, 161, 439. https://doi.org/10.1016/j.watres.2019.06.021

    Article  CAS  Google Scholar 

  • Li, H., Cheng, F., Wei, Y., Lydy, M. J., & You, J. (2017). Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: An overview. Journal of Hazardous Materials, 324, 258–270. https://doi.org/10.1016/j.jhazmat.2016.10.056

    Article  CAS  Google Scholar 

  • Liu, G., Li, L., Huang, X., Zheng, S., Xu, X., Liu, Z., Zhang, Y., Wang, J., Lin, H., & Xu, D. (2018). Adsorption and removal of organophosphorus pesticides from environmental water and soil samples by using magnetic multi-walled carbon nanotubes @ organic framework ZIF-8. Journal of Material Science, 53, 10772–10785. https://doi.org/10.1007/s10853-018-2352-y

    Article  CAS  Google Scholar 

  • Liu, H., Chen, J., Wu, N., Xu, X., Qi, Y., Jiang, L., Wang, X., & Wang, Z. (2019). Oxidative degradation of chlorpyrifos using ferrate (VI): Kinetics and reaction mechanism. Ecotoxicology and Environmental SafEty, 170, 259–271. https://doi.org/10.1016/j.ecoenv.2018.11.132

    Article  CAS  Google Scholar 

  • López-Gálvez, N., Wagoner, R., Quirós-Alcalá, L., Ornelas Van Horne, Y., Furlong, M., Avila, E., & Beamer, P. (2019). Systematic literature review of the take-home route of pesticide exposure via biomonitoring and environmental monitoring. International Journal of Environmental Research and Public Health., 16, 2177–2190. https://doi.org/10.3390/ijerph16122177

    Article  CAS  Google Scholar 

  • Lu, D., Wang, D., Ni, R., Lin, Y., Feng, C., Xu, Q., Jia, X., Wang, G., & Zhou, Z. (2015). Organochlorine pesticides and their metabolites in human breast milk from Shanghai, China. Environmental Science and PollutIon Research International, 22, 9293–9304. https://doi.org/10.1007/s11356-015-4072-z

    Article  CAS  Google Scholar 

  • Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A. J., Jenkins, A., Ferrier, R. C., Li, H., Luo, W., & Wang, T. (2014). Impacts of soil and water pollution on food safety and health risks in China. Environment International, 77, 5–20. https://doi.org/10.1016/j.envint.2014.12.010

    Article  CAS  Google Scholar 

  • Lv, T., Zhang, Y., Carvalho, P. N., Zhang, L., Button, M., Arias, C. A., Weber, K. P., & Brix, H. (2017). Microbial community metabolic function in constructed wetland mesocosms treating the pesticides imazalil and tebuconazole. Ecological Engineering, 98, 378–400. https://doi.org/10.1016/j.ecoleng.2016.07.004

    Article  Google Scholar 

  • McKnight, U. S., Rasmussen, J. J., Kronvang, B., Binning, P. J., & Bjerg, P. L. (2015). Sources, occurrence and predicted aquatic impact of legacy and contemporary pesticides in streams. Environmental Pollution, 200, 64–81. https://doi.org/10.1016/j.envpol.2015.02.015

    Article  CAS  Google Scholar 

  • McMaine, J. T., Vogel, J. R., Belden, J. B., Schnelle, M. A., Morrison, S. A., Brown, G. O., Megha, M., & Akashe. (2018). Classification of pesticides: A review. International Journal of Research in Ayurveda and Pharmacy., 9, 25–38.

    Google Scholar 

  • McMaine, J. T., Vogel, J. R., Belden, J. B., Schnelle, M. A., Morrison, S. A., & Brown, G. O. (2020). Field studies of pollutant removal from nursery and greenhouse run-off by constructed wetlands. Journal of Environmental Quality, 49, 2425–2434. https://doi.org/10.1002/jeq2.20024

    Article  Google Scholar 

  • Mnif, W., Hassine, A. I. H., Bouaziz, A., Bartegi, A., Thomas, O., & Roig, B. (2011). Effect of endocrine disruptor pesticides: A review. International Journal of Environmental Research and Public Health, 8, 2265–2280. https://doi.org/10.3390/ijerph8062265

    Article  CAS  Google Scholar 

  • Mojiri, A., Zhou, J., Vakili, M., & Van Le, H. (2020). Removal performance and optimisation of pharmaceutical micropollutants from synthetic domestic wastewater by hybrid treatment. Journal of Contaminant Hydrology., 1(235), 103736. https://doi.org/10.1016/j.jconhyd.2020.103736

    Article  CAS  Google Scholar 

  • Monika, N., Neeraj, D., Giovanna, M., Ajeet, K., Christian, S., Ki-Hyun, K., & Sandeep, K. (2021). Emerging nanobiotechnology in agriculture for the management of pesticide residues. Journal of Hazardous Materials, 401, 123369. https://doi.org/10.1016/j.jhazmat.2020.123369

    Article  CAS  Google Scholar 

  • Moradi, H., Sabbaghi, S., Mirbagheri, N. S., Chen, P., Rasouli, K., Kamyab, H., & Chelliapan, S. (2023). Removal of chloride ion from drinking water using Ag NPs-Modified bentonite: Characterization and optimization of effective parameters by response surface methodology-central composite design. Environmental Research, 223, 115484. https://doi.org/10.1016/j.envres.2023.115484

    Article  CAS  Google Scholar 

  • Morillo, E., & Villaverde, J. (2017). Advanced technologies for the remediation of pesticide contaminated soils. Science of the Total Environment, 586, 576–585. https://doi.org/10.1016/j.scitotenv.2017.02.020

    Article  CAS  Google Scholar 

  • Mostafalou, S., & Abdollahi, M. (2013). Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicology and Applied Pharmacology, 268, 157–175. https://doi.org/10.1016/j.taap.2013.01.025

    Article  CAS  Google Scholar 

  • Muhammad, M., Fahad, O. A., Mirza, B. B., Bader, M. A., & Abdul, Q. K. (2019). Assessment of farmers on their knowledge regarding pesticide usage and biosafety. Saudi Journal of Biological Sciences, 26, 1903–1915. https://doi.org/10.1016/j.sjbs.2019.03.001

    Article  Google Scholar 

  • Nawirska, A. (2007). Gospodarka wodno-ściekowa w przemyśle owocowo-warzywnym. Agro Przemysł., 3, 65–67.

    Google Scholar 

  • NSW EPA. (2013). What Are Pesticides and How Do They Work? http://www.epa.nsw.gov.au/pesticides/pestwhatrhow.htm

  • Nicolas, L. G., Wagoner, R., Quirós-Alcala, L., Horne, Y. O. V., Furlong, M., Avila, E., & Paloma, B. (2019). Take-home route of pesticide exposure. Encyclopedia of Environmental Health. https://doi.org/10.1016/B978-0-12-409548-9.11052-8

    Article  Google Scholar 

  • Nitin, B., Dinesh, K. M., Anuradha, S., & Pardha-Saradhi, P. (2014). Status of wetlands in India: A review of extent, ecosystem benefits, threats and management strategies. Journal of Hydrology: Regional Studies, 2, 1–19. https://doi.org/10.1016/j.ejrh.2014.07.001

    Article  Google Scholar 

  • Nougadere, A., Sirot, V., Kadar, A., Fastier, A., Truchot, E., Vergnet, C., Hommet, F., Bayle, J., Gros, P., & Leblanc, J. C. (2012). Total diet study on pesticide residues in France: Levels in food as consumed and chronic dietary risk to consumers. Environment International, 45, 135–154. https://doi.org/10.1016/j.envint.2012.02.001

    Article  CAS  Google Scholar 

  • Okibe, F. G., Garba, Z. N., & Alimi, J. M. (2018). Optimisation of the conditions for adsorption of fluoride in aqueous solution by carrot residue using central composite design of experiment. Bayero Journal of Pure and Applied Sciences, 11, 230–244. https://doi.org/10.4314/bajopas.v11i1.38S

    Article  Google Scholar 

  • Pecoraro, R., D’Angelo, D., Filice, S., Scalese, S., Capparucci, F., Marino, F., Iaria, C., Guerriero, G., Tibullo, D., Scalisi, E. M., Salvaggio, A., Nicotera, I., & Brundo, M. V. (2018). Toxicity evaluation of graphene oxide and titania loaded nafion membranes in zebrafish. Frontiers in Physiology, 25, 1342–1356. https://doi.org/10.3389/fphys.2016.00130/full

    Article  Google Scholar 

  • Pesiakova, A. A., Gusakova, E. V., Trofimova, A. N., & Sorokina, T. Y. (2017). Migratory birds are the source of highly toxic organic pollutants for indigenous people in the Russian Arctic. In IOP Conference Series: Earth and Environmental Science, 107, 1755–1764.

    Google Scholar 

  • Plakas, K. V., & Karabelas, A. J. (2012). Removal of pesticides from water by NF and RO membranes—A review. Desalination, 287, 255–265. https://doi.org/10.1016/j.desal.2011.08.003

    Article  CAS  Google Scholar 

  • Plakas, K. V., & Karabelas, A. J. (2018). Electro-Fenton applications in the water industry. Electro-Fenton Process: New Trends and Scale-Up, 343–378. https://doi.org/10.1007/698_2017_52

  • Qingfeng, Y., **g, W., Wentao, Z., Fangbing, L., **aoyue, Y., Yingnan, L., Mei, Y., Zhonghong, L., & Jianlong, W. (2017). Interface engineering of metal organic framework on graphene oxide with enhanced adsorption capacity for organophosphorus pesticide. Chemical Engineering Journal, 313, 19–33. https://doi.org/10.1016/j.cej.2016.12.041

    Article  CAS  Google Scholar 

  • Rashid, S., Rashid, W., Tulcan, R. X. S., & Huang, H. (2022). Use, exposure, and environmental impacts of pesticides in Pakistan: A critical review. Environmental Science and Pollution Research International, 29, 43675–43688. https://doi.org/10.1007/s11356-022-20164-7

    Article  Google Scholar 

  • Reiler, E., Jørs, E., Bælum, J., Huici, O., Alvarez, C. M. M., & Cedergreen, N. (2015). The influence of tomato processing on residues of organochlorine and organophosphate insecticides and their associated dietary risk. Science of the Total Environment, 527, 262–278. https://doi.org/10.1016/j.scitotenv.2015.04.081

    Article  CAS  Google Scholar 

  • Ren, Q., Yin, C., Chen, Z., Cheng, M., Ren, Y., **e, X., Li, Y., Zhao, X., Xu, L., Yang, H., & Li, W. (2019). Efficient sonoelectrochemical decomposition of chlorpyrifos in aqueous solution. Microchemical Journal, 145, 146–165. https://doi.org/10.1016/j.microc.2018.10.032

    Article  CAS  Google Scholar 

  • Renwu, Z., Rusen, Z., Feng, Y., Dengke, X., Peiyu, W., Jiangwei, L., **ngquan, W., **anhui, Z., Kateryna, B., & Kostya, O. (2018). Removal of organophosphorus pesticide residues from Lycium barbarum by gas phase surface discharge plasma. Chemical Engineering Journal, 342, 401–418. https://doi.org/10.1016/j.cej.2018.02.107

    Article  CAS  Google Scholar 

  • Roeleveld, N., & Bretveld, R. (2008). The impact of pesticides on male fertility. Current Opinion in Obstetrics and Gynecology, 20, 229–243. https://doi.org/10.1097/GCO.0b013e3282fcc334

    Article  Google Scholar 

  • Ronald, M., Christin, H., Polina, O., Roman, G., Albrecht, P., Kaarina, F., Jeremias, B., Oliver, K., Elin, P., Märit, P., Henrik, J., Jenny, K., Gerrit, S., & Matthias, L. (2017). Pesticides from wastewater treatment plant effluents affect invertebrate communities. Science of the Total Environment, 599, 387–400. https://doi.org/10.1016/j.scitotenv.2017.03.008

    Article  CAS  Google Scholar 

  • Ruiz-Suárez, N., Boada, L. D., Henríquez-Hernández, L. A., González-Moreo, F., Suárez-Pérez, A., Camacho, M., Zumbado, M., Almeida-González, M., del Mar, T. A. M., & Luzardo, O. P. (2015). Continued implication of the banned pesticides carbofuran and aldicarb in the poisoning of domestic and wild animals of the Canary Islands (Spain). Science of the Total Environment., 1(505), 1093–1099.

    Article  Google Scholar 

  • Salameh, P., Waked, M., Baldi, I., Brochard, P., & Saleh, B. A. (2006). Respiratory diseases and pesticide exposure: A case-control study in Lebanon. Journal of Epidemiology and Community Health, 60, 256–276. https://doi.org/10.1136/jech.2005.039677

    Article  Google Scholar 

  • Salvaggio, A., Marino, F., Albano, M., Pecoraro, R., Camiolo, G., Tibullo, D., Bramanti, V., Lombardo, B. M., Saccone, S., Mazzei, V., & Brundo, M. V. (2016). Toxic effects of zinc chloride on the bone development in Danio rerio (Hamilton, 1822). Frontiers in Physiology., 29, 153–165. https://doi.org/10.3389/fphys.2016.00153

    Article  Google Scholar 

  • Samreen, H. K., & Bhawana, P. (2020). Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review. Environmental Nanotechnology Monitoring Management, 13, 100290. https://doi.org/10.1016/j.enmm.2020.100290

    Article  Google Scholar 

  • Séralini, G. E., Clair, E., Mesnage, R., Gress, S., Defarge, N., Malatesta, M., Hennequin, D., & de Vendomois, J. S. (2014). Republished study: Long-term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maise. Environmental Sciences Europe, 26, 14–32. https://doi.org/10.1186/s12302-014-0014-5

    Article  CAS  Google Scholar 

  • Shabbir, M., Singh, M., Maiti, S., Kumar, S., & Saha, S. K. (2018). Removal enactment of organo-phosphorous pesticide using bacteria isolated from domestic sewage. Bioresource Technology, 263, 280–295.

    Article  CAS  Google Scholar 

  • Shan, W., Wang, J., Li, C., Ya**, Xu., & Zhaoxia, Wu. (2021). Ozone treatment pak choi for the removal of malathion and carbosulfan pesticide residues. Food Chemistry, 337, 127755. https://doi.org/10.1016/j.foodchem.2020.127755

    Article  CAS  Google Scholar 

  • Singare, P. U. (2015). Persistent organic pesticide residues in sediments of Vasai Creek near Mumbai: Assessment of sources and potential ecological risk. Marine Pollutution Bulletin, 100, 464. https://doi.org/10.1016/j.marpolbul.2015.09.033

    Article  CAS  Google Scholar 

  • Skendžić, S., Zovko, M., Živković, I. P., Lešić, V., & Lemić, D. (2021). The impact of climate change on agricultural insect pests. Insects, 12(5), 440. https://doi.org/10.3390/insects12050440

  • Stuart, M., Lapworth, D., Crane, E., & Hart, A. (2012). Review of risk from potential emerging contaminants in UK groundwater. Science of the Total Environment., 1(416), 1–21.

    Article  Google Scholar 

  • Sujatha, S., Rajamohan, N., Sanjay, S., Abhishek, R., & Rajasimman, M. (2024). Sustainable remediation of pesticide pollutants using covalent organic framework—A review on material properties, synthesis methods and application. Environmental Research, 246, 118018.

    Article  Google Scholar 

  • Suramya, R., **, Y., & Ray, L. (2016). Frost Environmental applications of inorganic-organic clays for recalcitrant organic pollutants removal: Bisphenol A. Journal of Colloid and Interface Science, 470, 183. https://doi.org/10.1016/j.jcis.2016.02.034

    Article  CAS  Google Scholar 

  • Surip, S. N., Abdulhameed, A. S., Garba, Z. N., Syed-Hassan, S. S. A., Ismail, K., & Jawad, A. H. (2020). H2SO4-treated Malaysian low rank coal for methylene blue dye decolourisation and cod reduction: optimisation of adsorption and mechanism study. Surfaces and Interfaces, 21, 100641. https://doi.org/10.1016/j.surfin.2020.100641

    Article  CAS  Google Scholar 

  • Taku, M., Morimoto, A., Kuriyama, T., Matsumoto, E., Matsui, Y., Shirasaki, N., Kondo, T., Takanashi, H., & Kameya, T. (2018). Removals of pesticides and pesticide transformation products during drinking water treatment processes and their impact on mutagen formation potential after chlorination. Water Research, 138, 67. https://doi.org/10.1016/j.watres.2018.01.028

    Article  CAS  Google Scholar 

  • The WHO Recommended Classification of Pesticides by Hazard and guidelines to classification, 2019 edition

  • Tan, C. H. C., Sabar, S., Haafiz, M. K. M., Garba, Z. N., & Hussin, M. H. (2020). The improved adsorbent properties of microcrystalline cellulose from oil palm fronds through immobilisation technique. Surfaces and Interfaces, 20, 100614.

    Article  Google Scholar 

  • Tao, L., Shirong, Xu., Shaoyong, Lu., Qin, P., Bi, B., Ding, H., Liu, Y., Guo, X., & Liu, X. (2019). A review on removal of organophosphorus pesticides in constructed wetland: Performance, mechanism and influencing factors. Science of the Total Environment, 651, 2247–2260. https://doi.org/10.1016/j.scitotenv.2018.10.087

    Article  CAS  Google Scholar 

  • Tauqeer, A., Tanush, W., Asad, K., John, M., & Eakalak, K. (2020). Virgin (Fe) and microbially regenerated (Fe2+) iron turning waste for treating chlorinated pesticides in water. Journal of Hazardous Materials, 398, 122980. https://doi.org/10.1016/j.jhazmat.2020.122980

    Article  CAS  Google Scholar 

  • Tengfei, L., Meng, Lu., Gao, Y., Huang, X., Liu, G., & Donghui, Xu. (2020). Double layer MOFs M-ZIF-8@ZIF-67: The adsorption capacity and removal mechanism of fipronil and its metabolites from environmental water and cucumber samples. Journal of Advanced Research, 24, 159. https://doi.org/10.1016/j.jare.2020.03.013

    Article  CAS  Google Scholar 

  • Thakur, D. S., Khot, R., Joshi, P. P., Pandharipande, M., & Nagpure, K. (2014). Glyphosate poisoning with acute pulmonary edema. Toxicology International, 21, 328. https://doi.org/10.4103/0971-6580.155389

    Article  Google Scholar 

  • Tsaboula, A., Papadakis, E. N., Vryzas, Z., Kotopoulou, A., Kintzikoglou, K., & Papadopoulou-Mourkidou, E. (2016). Environmental and human risk hierarchy of pesticides: A prioritisation method, based on monitoring, hazard assessment and environmental fate. Environment International, 91, 78–93. https://doi.org/10.1016/j.envint.2016.02.008

    Article  CAS  Google Scholar 

  • Uniyal, S., & Sharma, R. K. (2018). Technological advancement in electrochemical biosensor based detection of organophosphate pesticide chlorpyrifos in the environment: A review of status and prospects. Biosensors and Bioelectronics., 116, 37–56. https://doi.org/10.1016/j.bios.2018.05.039

    Article  CAS  Google Scholar 

  • Ventura, C., Zappia, C. D., Lasagna, M., Pavicic, W., Richard, S., Bolzan, A. D., Monczor, F., Nunez, M., & Cocca, C. (2019). Effects of the pesticide chlorpyrifos on breast cancer disease. Implication of epigenetic mechanisms. The Journal of Steroid Biochemistry and Molecular Biology., 186, 96–108. https://doi.org/10.1016/j.jsbmb.2018.09.021

    Article  CAS  Google Scholar 

  • Vinod, K. G., Agarwal, S., Asif, M., Fakhri, A., & Sadeghi, N. (2017). Application of response surface methodology to optimise the adsorption performance of a magnetic graphene oxide nanocomposite adsorbent for removal of methadone from the environment. Journal of Colloid and Interface Science, 497, 193–205. https://doi.org/10.1016/j.jcis.2017.03.006

    Article  CAS  Google Scholar 

  • Vítor, J. P. V., Moreira, F. C., Ferreira, A. C. C., Sousa, M. A., Gonçalves, C., Alpendurada, M. F., & Boaventura, R. A. R. (2012). Biodegradability enhancement of a pesticide-containing bio-treated wastewater using a solar photo-Fenton treatment step followed by a biological oxidation process. Water Research, 46, 4599–4610. https://doi.org/10.1016/j.watres.2012.06.038

    Article  CAS  Google Scholar 

  • Wahab, A., Hod, R., Ismail, N., & Omar, N. (2016). The effect of pesticide exposure on cardiovascular system: A systematic review. International Journal of Community Medicine and Public Health, 1, 10–24. https://doi.org/10.18203/2394-6040.ijcmph20151542

    Article  Google Scholar 

  • Wengang, H., Chai, M., Lin, R., Chen, V., & Hou, J. (2023). Mechanism comprehension and design of MOF catalysts for photocatalytic ammonia production. Industrial & Engineering Chemistry Research, 62, 14130–14143. https://doi.org/10.1021/acs.iecr.3c02177

    Article  CAS  Google Scholar 

  • Witczak, A., & Abdel-Gawad, H. (2014). Assessment of health risk from organochlorine pesticides residues in high-fat spreadable foods produced in Poland. Journal of Environmental Science and Health Part B, 49, 917–930. https://doi.org/10.1080/03601234.2014.951574

    Article  CAS  Google Scholar 

  • **ao, W., Jiang, X., Liu, X., Zhou, W., Garba, Z. N., Lawan, I., Wang, L., & Yuan, Z. (2020). Adsorption of organic dyes from wastewater by metal-doped porous carbon materials. Journal of Cleaner Production, 284, 124773. https://doi.org/10.1016/j.jclepro.2020.124773

    Article  CAS  Google Scholar 

  • **ao, Y. T., Yang, Y., McBride, M. B., Tao, R., Dai, Y.-N., & Zhang, X.-M. (2019). Removal of chlorpyrifos in recirculating vertical flow constructed wetlands with five wetland plant species. Chemosphere, 216, 195. https://doi.org/10.1016/j.chemosphere.2018.10.150

    Article  CAS  Google Scholar 

  • Yang, Y., Che, J., Wang, B., Wu, Y., Chen, B., Gao, L., Dong, X., & Zhao, J. (2019). Visible-light-mediated guest trap** in a photosensitising porous coordination network: Metal-free C-C bond-forming modification of metal-organic frameworks for aqueous-phase herbicide adsorption. Chemical Communications, 55, 5383–5396. https://doi.org/10.1039/C9CC01371G

    Article  CAS  Google Scholar 

  • Yassine, A., Omar, B., & Karine, G. S. (2019). Study of the degradation of an organophosphorus pesticide using electrogenerated hydroxyl radicals or heat-activated persulfate. Separation and Purification Technology, 208, 27–42. https://doi.org/10.1016/j.seppur.2018.05.066

    Article  CAS  Google Scholar 

  • Yuan, X., Pan, Z., **, C., Ni, Y., Fu, Z., & **, Y. (2019). Gut microbiota: An underestimated and unintended recipient for pesticide-induced toxicity. Chemosphere, 227, 425–441. https://doi.org/10.1016/j.chemosphere.2019.04.088

    Article  CAS  Google Scholar 

  • Zheng, S., Chen, B., Qiu, X., Chen, M., Ma, Z., & Yu, X. (2016). Distribution and risk assessment of 82 pesticides in Jiulong River and estuary in South China. Chemosphere, 144, 1177–1190. https://doi.org/10.1016/j.chemosphere.2015.09.050

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. S.: Conceptualization, Software, Methodology, Validation, Writing - original draft. K. S. K.: Validation, Writing - original draft. U. S.: Methodology, Writing - original draft. D. P.: Methodology, Writing - original draft. M. K.: Methodology, Validation, Writing - original draft. M. R.: Project administration, Writing - review & editing. P. T.: Validation, Writing - original draft. A. S.: Methodology, Validation, Writing - original draft. J. A. K.: Project administration, Conceptualization, Writing - review & editing. Y. V.: Project administration, Writing - review & editing. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Sathish Sundararaman or Yasser Vasseghian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundararaman, S., Kumar, K.S., Siddharth, U. et al. Sustainable approach for the expulsion of metaldehyde: risk, interactions, and mitigation: a review. Environ Geochem Health 46, 248 (2024). https://doi.org/10.1007/s10653-024-02001-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-02001-7

Keywords

Navigation