Log in

Health risk assessment and bioaccumulation of potentially toxic metals from water, soil, and forages near coal mines of district Chakwal, Punjab, Pakistan

  • Correspondence
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Water, forages, and soil contamination with potentially toxic metals (PTMs) through anthropogenic activities has become a significant environmental concern. It is crucial to find out the level of PTMs in water, soil, and forages near industrial areas. The PTMs enter the body of living organisms through these sources and have become a potential risk for humans and animals. Therefore, the present study aims at the health risk assessment of PTMs and their accumulation in soil, water, and forages of three tehsils (Kallar Kahar, Choa Saidan Shah, and Chakwal) in district Chakwal. Samples of wastewater, soil, and forages were collected from various sites of district Chakwal. PTMs detected in the present study were cadmium (Cd), chromium (Cr), lead (Pb), zinc (Zn), cobalt (Co), copper (Cu), and nickel (Ni), and their levels were measured through atomic absorption spectrophotometer (AAs GF95 graphite furnace auto sampler). Pollution load index (PLI), bio concentration factor (BCF), soil enrichment factors (EF), daily intake value (DIM), and health risk index (HRI) in sheep, cow, and buffalo were also analyzed. The results revealed that the mean concentration (mg/L) of Cd (0.72–0.91 mg/L), Cr (1.84–2.23 mg/L), Pb (0.95–3.22 mg/L), Co (0.74–2.93 mg/L), Cu (0.84–1.96 mg/L), and Ni (1.39–4.39 mg/L) in wastewater samples was higher than permissible limits set by WHO, NEQS, WWF, USEPA, and Pakistan in all three tehsils of district Chakwal. Similarly, in soil samples, concentrations of Cd (1.21–1.95 mg/kg), Cr (38.1–56.4 mg/kg), and Ni (28.3–55.9 mg/kg) were higher than their respective threshold values. The mean concentration of PTMs in forage samples (Parthenium hysterophorus, Mentha spicata, Justicia adhatoda, Calotropis procera, Xanthium strumarium, Amaranthaceae sp.) showed that maximum values of Cd (5.35–7.55 mg/kg), Cr (5.47–7.51 mg/kg), Pb (30–36 mg/kg), and Ni (12.6–57.5 mg/kg) were beyond their safe limit set for forages. PLI, BCF, and EF were > 1.0 for almost all the PTMs. The DIM and HRI for sheep were less than < 1.0 but for cows and buffalo were > 1.0. The current study showed that soil, water, and forages near coal mines area are contaminated with PTMs which enter the food chain and pose significant harm to humans and animals. In order to prevent their dangerous concentration in the food chain, regular assessment of PTMs present in soil, forages, irrigating water, and food is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abuzaid, A. S., Jahin, H. S., Asaad, A. A., Fadl, M. E., AbdelRahman, M. A., & Scopa, A. (2021). Accumulation of potentially toxic metals in Egyptian alluvial soils, berseem clover (Trifolium alexandrinum L.), and groundwater after long-term wastewater irrigation. Agriculture, 11(8), 713.

  • Abdullah, N., Ayodele, B. V., Mansor, W. N. W., & Abdullah, S. (2018). Effect of incorporating TiO2 photocatalyst in PVDF hollow fibre membrane for photo-assisted degradation of methylene blue. Bulletin of Chemical Reaction Engineering & Catalysis, 13(3), 588–591.

  • Adaramola, B., & Onigbinde, A. (2017). Influence of extraction technique on the mineral content and antioxidant capacity of edible oil extracted from ginger rhizome. Chemistry International, 3(1), 1–7.

    CAS  Google Scholar 

  • Adebayo, F. M., Ore, O. T., Akhigbe, G. E., & Adegunwa, A. O. (2020). Metal fractionation in the soils around a refined petroleum products depot. Environmental Forensics, 21(2), 121–131.

    Google Scholar 

  • Adebiyi, F. M., Ore, O. T., Adegunwa, A. O., & Akhigbe, G. E. (2021). Source apportionment, health and ecological risk assessments of essential and toxic elements in kerosene-contaminated soils. Environmental Forensics. https://doi.org/10.1080/15275922.2021.1940384

    Article  Google Scholar 

  • Ahmed, D. A., & Slima, D. F. (2018). Heavy metal accumulation by Corchorus olitorius L. irrigated with wastewater. Environmental Science and Pollution Research, 25(15), 14996–15005.

    CAS  Google Scholar 

  • Akhtar, M., Khan, Z. I., Ahmad, K., Mehmood, N., Mahpara, S., Nadeem, M., & Shaheen, F. (2020). 81. Assessing the seasonal transfer of Pb and Cu from pasture to animals in the vicinity of coal mines in district Chakwal Pakistan. Pure and Applied Biology (PAB), 9(1), 859–871.

    CAS  Google Scholar 

  • Albornoz, C. B., Larsen, K., Landa, R., Quiroga, M. A., Najle, R., & Marcovecchio, J. (2016). Lead and zinc determinations in Fistula arundinaceous and Cynodon dactylon collected from contaminated soils in Tindal (Buenos Aires Province, Argentina). Environmental Earth Sciences, 75(9), 1–8.

    CAS  Google Scholar 

  • Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3), 42.

    CAS  Google Scholar 

  • Alghobar, M. A., & Suresha, S. (2017). Evaluation of metal accumulation in soil and tomatoes irrigated with sewage water from Mysore city, Karnataka, India. Journal of the Saudi Society of Agricultural Sciences, 16(1), 49–59.

    Google Scholar 

  • Ali, H., & Khan, E. (2018). Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environmental Chemistry Letters, 16(3), 903–917.

    CAS  Google Scholar 

  • Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019, 1.

    Google Scholar 

  • Allouzi, M. M. A., Tang, D. Y. Y., Chew, K. W., Rinklebe, J., Bolan, N., Allouzi, S. M. A., & Show, P. L. (2021). Micro (nano) plastic pollution: The ecological influence on soil-plant system and human health. Science of the Total Environment, 788, 147815.

    CAS  Google Scholar 

  • Angulo, E. (1996). The Tomlinson pollution load index applied to heavy metal, ‘Mussel-Watch’data: A useful index to assess coastal pollution. Science of the Total Environment, 187(1), 19–56.

    CAS  Google Scholar 

  • Asgari Lajayer, B., Khadem Moghadam, N., Maghsoodi, M. R., Ghorbanpour, M., & Kariman, K. (2019). Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: Mechanisms and efficiency improvement strategies. Environmental Science and Pollution Research, 26(9), 8468–8484.

    CAS  Google Scholar 

  • Balkhair, K. S., & Ashraf, M. A. (2016). Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi Journal of Biological Sciences, 23(1), S32–S44.

    CAS  Google Scholar 

  • Barman, H., Das, S. K., & Roy, A. (2018). Zinc in soil environment for plant health and management strategy. Universal Journal of Agricultural Research, 6(5), 149–154.

    Google Scholar 

  • Bhuyan, M. S., Bakar, M. A., Akhtar, A., Hossain, M. B., Ali, M. M., & Islam, M. S. (2017). Heavy metal contamination in surface water and sediment of the Meghna River, Bangladesh. Environmental Nanotechnology, Monitoring and Management, 8, 273–279.

    Google Scholar 

  • Bilal, A., Siddiquei, A., Asadullah, M. A., Awan, H. M., & Asmi, F. (2021). Servant leadership: A new perspective to explore project leadership and team effectiveness. International Journal of Organizational Analysis, 29(3), 699–715.

  • Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691.

    CAS  Google Scholar 

  • Chen, F., Khan, Z. I., Zafar, A., Ma, J., Nadeem, M., Ahmad, K., & Yang, Y. (2021). Evaluation of toxicity potential of cobalt in wheat irrigated with wastewater: Health risk implications for the public. Environmental Science and Pollution Research, 28(17), 21119–21131.

    CAS  Google Scholar 

  • Chen, F., Muhammad, F. G., Khan, Z. I., Ahmad, K., Nadeem, M., Mahmood, S., & Ma, J. (2022). Ecological risk assessment of heavy metal chromium in a contaminated pastureland area in the Central Punjab, Pakistan: Soils versus plants versus ruminants. Environmental Science and Pollution Research, 29(3), 4170–4179.

    CAS  Google Scholar 

  • Chikkanna, A., Mehan, L., Sarath, P. K., & Ghosh, D. (2019). Arsenic exposures, poisoning, and threat to human health: Arsenic affecting human health. In P. Papadopoulou, C. Marouli, & A. Misseyanni (Eds.), Environmental exposures and human health challenges (pp. 86–105). IGI Global.

    Google Scholar 

  • Cui, Y. J., Zhu, Y. G., Zhai, R. H., Chen, D. Y., Huang, Y. Z., Qiu, Y., & Liang, J. Z. (2004). Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environment International, 30(6), 785–791.

    CAS  Google Scholar 

  • Do Nascimento Júnior, L. A., de Paiva, A. Q., da Souza, L. S., Souza-Filho, F. L., Souza, D. L., Fernandes Filho, E. I., Schaefer, C. E. R. G., da Silva, E. F., Fernandes, A. C. O., & da Xavier, F. A. S. (2021). Heavy metals distribution in different parts of cultivated and native plants and their relationship with soil content. International Journal of Environmental Science and Technology, 18(1), 225–240.

    Google Scholar 

  • Doabi, S. A., Karami, M., Afyuni, M., & Yeganeh, M. (2018). Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province. Iran. Ecotoxicology and Environmental Safety, 163, 153–164.

    CAS  Google Scholar 

  • Engwa, G. A., Ferdinand, P. U., Nwalo, F. N., & Unachukwu, M. N. (2019). Mechanism and health effects of heavy metal toxicity in humans. In O. Karcioglu & B. Arslan (Eds.), Poisoning in the modern world-new tricks for an old dog. (Vol. 10). IntechOpen.

    Google Scholar 

  • Feng, Z., Ji, S., **, J., & Cui, D. (2021). Recent advances in metabolomics for studying heavy metal stress in plants. TrAC Trends in Analytical Chemistry, 143, 116402.

    CAS  Google Scholar 

  • Fu, M. M., Dawood, M., Wang, N. H., & Wu, F. (2019). Exogenous hydrogen sulfide reduces cadmium uptake and alleviates cadmium toxicity in barley. Plant Growth Regulation, 89(2), 227–237.

    CAS  Google Scholar 

  • Ge, X., Khan, Z. I., Chen, F., Akhtar, M., Ahmad, K., Ejaz, A., ... & Elshikh, M. S. (2021). A study on the contamination assessment, health risk and mobility of two heavy metals in the soil-plants-ruminants system of a typical agricultural region in the semi arid environment. Environmental Science and Pollution Research, 1–11.

  • Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782.

    CAS  Google Scholar 

  • Granero, S., & Domingo, J. L. (2002). Levels of metals in soils of Alcalá de Henares, Spain: Human health risks. Environment International, 28(3), 159–164.

    CAS  Google Scholar 

  • Gromadzka, G., Tarnacka, B., Flaga, A., & Adamczyk, A. (2020). Copper dyshomeostasis in neurodegenerative diseases—therapeutic implications. International Journal of Molecular Sciences, 21(23), 9259.

    CAS  Google Scholar 

  • Gupta, A. R., Bandyopadhyay, S., Sultana, F., & Swarup, D. (2021). Heavy metal poisoning and its impact on livestock health and production system. Indian Journal Animal Health, 60, 1–23.

  • Guvvala, P. R., Ravindra, J. P., & Selvaraju, S. (2020). Impact of environmental contaminants on reproductive health of male domestic ruminants: A review. Environmental Science and Pollution Research, 27(4), 3819–3836.

    CAS  Google Scholar 

  • Homayonibezi, N., Dobaradaran, S., Arfaeinia, H., Mahmoodi, M., Sanati, A. M., Farzaneh, M. R., Kafaei, R., Afsari, M., Fouladvand, M., & Ramavandi, B. (2021). Toxic heavy metals and nutrient concentration in the milk of goat herds in two Iranian industrial and non-industrial zones. Environmental Science and Pollution Research, 28(12), 14882–14892.

    CAS  Google Scholar 

  • Hussain, A., Priyadarshi, M., Said, S., & Negi, S. (2017). Effect of wastewater on the soil and irrigation process: A laboratory study. Journal of Geographical Studies, 1(1), 46–55.

  • Hussain, M. I., Iqbal Khan, Z., Naeem, M., Ahmad, K., Awan, M. U. F., Alwahibi, M. S., & Elshikh, M. S. (2021). Blood, hair and feces as an indicator of environmental exposure of sheep, cow and buffalo to cobalt: A health risk perspectives. Sustainability, 13(14), 7873.

    CAS  Google Scholar 

  • Ilyas, M., Ahmad, W., Khan, H., Yousaf, S., Yasir, M., & Khan, A. (2019). Environmental and health impact of industrial wastewater effluents in Pakistan: A review. Reviews on Environmental Health, 34(2), 171–186.

    CAS  Google Scholar 

  • Islam, M. D., Hasan, M. M., Rahaman, A., Haque, P., & Rahman, M. M. (2020). Translocation and bioaccumulation of trace metals from industrial effluent to locally grown vegetables and assessment of human health risk in Bangladesh. SN Applied Sciences, 2(8), 1–11.

    Google Scholar 

  • Jawad Hassan, M., Ali Raza, M., Ur Rehman, S., Ansar, M., Gitari, H., Khan, I., Wajid, M., Ahmed, M., Shah, G. A., Peng, Y., & Li, Z. (2020). Effect of cadmium toxicity on growth, oxidative damage, antioxidant defense system and cadmium accumulation in two sorghum cultivars. Plants, 9(11), 1575.

    Google Scholar 

  • Kahlon, S. K., Sharma, G., Julka, J. M., Kumar, A., Sharma, S., & Stadler, F. J. (2018). Impact of heavy metals and nanoparticles on aquatic biota. Environmental Chemistry Letters, 16(3), 919–946.

    CAS  Google Scholar 

  • Kalaivanan, D., & Ganeshamurthy, A. N. (2016). Mechanisms of heavy metal toxicity in plants. In N. K. Srinivasa Rao, K. S. Shivashankara, & R. H. Laxman (Eds.), Abiotic stress physiology of horticultural crops (pp. 85–102). Springer.

    Google Scholar 

  • Kanwar, V. S., Sharma, A., Srivastav, A. L., & Rani, L. (2020). Phytoremediation of toxic metals present in soil and water environment: a critical review. Environmental Science and Pollution Research, 27, 44835–44860.

  • Karande, U. B., Kadam, A., Umrikar, B. N., Wagh, V., Sankhua, R. N., & Pawar, N. J. (2020). Environmental modelling of soil quality, heavy-metal enrichment and human health risk in sub-urbanized semiarid watershed of western India. Modeling Earth Systems and Environment, 6(1), 545–556.

    Google Scholar 

  • Khan, Z. I., Ahmad, K., Ashraf, I., Fardous, A., Sher, M., Akram, N. A., Ashraf, M., Hayat, Z., Vito, L., & Cazzato, E. (2016). Appraisal of trace metal elements in soil, forage and animal continuum: a case study on pasture irrigated with sewage water. Formerly the Philippine Agriculturist, 9, 80.

    Google Scholar 

  • Khan, Z. I., Ahmad, K., Rehman, S., Ashfaq, A., Mehmood, N., Ugulu, I., & Dogan, Y. (2019b). Effect of sewage water on accumulation of metals in soil and wheat in Punjab, Pakistan. Pakistan Journal of Analytical and Environmental Chemistry, 20(1), 60–66.

    CAS  Google Scholar 

  • Khan, Z. I., Ahmad, K., Siddique, S., Ahmad, T., Bashir, H., Munir, M., & Chen, F. (2020). A study on the transfer of chromium from meadows to grazing livestock: An assessment of health risk. Environmental Science and Pollution Research, 27(21), 26694–26701.

    CAS  Google Scholar 

  • Khan, Z. I., Nisar, A., Ugulu, I., Ahmad, K., Wajid, K., Bashir, H., & Dogan, Y. (2019a). Determination of cadmium concentrations of vegetables grown in soil irrigated with wastewater: Evaluation of health risk to the public. Egyptian Journal of Botany, 59(3), 753–762.

    Google Scholar 

  • Krajnak, K. (2018). Health effects associated with occupational exposure to hand-arm or whole body vibration. Journal of Toxicology and Environmental Health, Part B, 21(5), 320–334.

    CAS  Google Scholar 

  • Krewski, D., Rice, J. M., Bird, M., Milton, B., Collins, B., Lajoie, P., & Zielinski, J. M. (2019). Concordance between sites of tumor development in humans and in experimental animals for 111 agents that are carcinogenic to humans. Journal of Toxicology and Environmental Health, Part B, 22(7–8), 203–236.

    CAS  Google Scholar 

  • Kumar, A., Kumar, A., Cabral-Pinto, M. M. S., Chaturvedi, A. K., Shabnam, A. A., Subrahmanyam, G., Mondal, R., Gupta, D. K., Malyan, S. K., Kumar, S. S., Khan, S. A., & Yadav, K. K. (2020). Lead toxicity: Health hazards, influence on food chain, and sustainable remediation approaches. International Journal of Environmental Research and Public Health, 17(7), 2179.

    CAS  Google Scholar 

  • Kumar, S., Prasad, S., Yadav, K. K., Shrivastava, M., Gupta, N., Nagar, S., & Malav, L. C. (2019). Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches-A review. Environmental Research, 179, 108792.

    CAS  Google Scholar 

  • Leblebici, Z., & Kar, M. (2018). Heavy metals accumulation in vegetables ırrigated with different water sources and their human daily intake in Nevsehir. Journal of Agricultural Science and Technology, 20, 401–415.

  • Liu, B., Xu, M., Wang, J., Wang, Z., & Zhao, L. (2021). Ecological risk assessment and heavy metal contamination in the surface sediments of Haizhou Bay, China. Marine Pollution Bulletin, 163, 111954.

    CAS  Google Scholar 

  • Liu, W. H., Zhao, J. Z., Ouyang, Z. Y., Söderlund, L., & Liu, G. H. (2005). Impacts of sewage irrigation on heavy metal distribution and contamination in Bei**g, China. Environment International, 31(6), 805–812.

  • Lwin, C. S., Seo, B. H., Kim, H. U., Owens, G., & Kim, K. R. (2018). Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil Science and Plant Nutrition, 64(2), 156–167.

    CAS  Google Scholar 

  • Mahmood, A., Mahmoud, A. H., El-Abedein, A. I. Z., Ashraf, A., & Almunqedhi, B. M. (2020). A comparative study of metals concentration in agricultural soil and vegetables irrigated by wastewater and tube well water. Journal of King Saud University-Science, 32(3), 1861–1864.

  • Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380–388.

    CAS  Google Scholar 

  • Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., & Chowdhary, P. (2019). Heavy metal contamination: an alarming threat to environment and human health. In R. C. Sobti, N. K. Arora, & R. Kothari (Eds.), Environmental biotechnology: For sustainable future (pp. 103–125). Springer.

    Google Scholar 

  • Moradnia, M., Attar, H. M., Heidari, Z., Mohammadi, F., & Kelishadi, R. (2021). Prenatal exposure to chromium (Cr) and nickel (Ni) in a sample of Iranian pregnant women: Urinary levels and associated socio-demographic and lifestyle factors. Environmental Science and Pollution Research, 28(44), 63412–63421.

    CAS  Google Scholar 

  • Nachana’a Timothy, E. T. W. (2019). Environmental pollution by heavy metal: an overview. Chemistry, 3(2), 72–82.

    Google Scholar 

  • Najam, S., Nawaz, R., Ahmad, S., Ehsan, N., Khan, M. M., & Nawaz, M. H. (2015). Heavy metals contamination of soils and vegetables irrigated with municipal wastewater: A case study of Faisalabad, Pakistan. Journal of Environmental Agricultural Science, 4, 6–10.

    Google Scholar 

  • Nordberg, G. F., Bernard, A., Diamond, G. L., Duffus, J. H., Illing, P., Nordberg, M., Bergdahl, I. A., **, T., & Skerfving, S. (2018). Risk assessment of effects of cadmium on human health (IUPAC Technical Report). Pure and Applied Chemistry, 90(4), 755–808.

    CAS  Google Scholar 

  • Norouzirad, R., González-Montaña, J. R., Martínez-Pastor, F., Hosseini, H., Shahrouzian, A., Khabazkhoob, M., & Moghaddam, A. F. (2018). Lead and cadmium levels in raw bovine milk and dietary risk assessment in areas near petroleum extraction industries. Science of the Total Environment, 635, 308–314.

    CAS  Google Scholar 

  • Pan, L. B., Ma, J., Wang, X. L., & Hou, H. (2016). Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution. Chemosphere, 148, 248–254.

    CAS  Google Scholar 

  • Pavlović, D., Pavlović, M., Čakmak, D., Kostić, O., Jarić, S., Sakan, S., & Pavlović, P. (2018). Fractionation, mobility, and contamination assessment of potentially toxic metals in urban soils in four industrial Serbian cities. Archives of Environmental Contamination and Toxicology, 75(3), 335–350.

    Google Scholar 

  • Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environmental Monitoring and Assessment, 191, 1–21.

    CAS  Google Scholar 

  • Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F., & Kim, K. H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, 365–385.

    CAS  Google Scholar 

  • Raimi, M. O., Ayibatonbira, A. A., Anu, B., Odipe, O. E., & Deinkuro, N. S. (2019). “Digging deeper” evidence on water crisis and its solution in Nigeria for Bayelsa State: A study of current scenario. Int J Hydro, 3(4), 244–257.

    Google Scholar 

  • Rashid, A., Bhatti, H. N., Iqbal, M., & Noreen, S. (2016). Fungal biomass composite with bentonite efficiency for nickel and zinc adsorption: A mechanistic study. Ecological Engineering, 91, 459–471.

    Google Scholar 

  • Rasool, B., Ramzani, P. M. A., Zubair, M., Khan, M. A., Lewińska, K., Turan, V., Karczewska, A., Khan, S. A., Farhad, M., Tauqeer, H. M., & Iqbal, M. (2021). Impacts of oxalic acid-activated phosphate rock and root-induced changes on Pb bioavailability in the rhizosphere and its distribution in mung bean plant. Environmental Pollution, 280, 116903.

    CAS  Google Scholar 

  • Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry, 119(1), 157–184.

    CAS  Google Scholar 

  • Sandeep, G., Vijayalatha, K. R., & Anitha, T. (2019). Heavy metals and its impact in vegetable crops. International Journal of Chemical Studies, 7(1), 1612–1621.

    CAS  Google Scholar 

  • Sarwar, T., Shahid, M., Khalid, S., Shah, A. H., Ahmad, N., Naeem, M. A., Haq ul, Z., Murtaza, B., & Bakhat, H. F. (2020). Quantification and risk assessment of heavy metal build-up in soil–plant system after irrigation with untreated city wastewater in Vehari, Pakistan. Environmental Geochemistry and Health, 42(12), 4281–4297.

    CAS  Google Scholar 

  • Shakir, S. K., Azizullah, A., Murad, W., Daud, M. K., Nabeela, F., Rahman, H., ... & Häder, D. P. (2017). Toxic metal pollution in Pakistan and its possible risks to public health. Reviews of Environmental Contamination and Toxicology, 242, 1–60.

  • Shah, A. H., Shahid, M., Tahir, M., Natasha, N., Bibi, I., Tariq, T. Z., Khalid, S., Nadeem, M., Abbas, G., Saeed, M. F., Ansar, S., & Dumat, C. (2022). Risk assessment of trace element accumulation in soil and Brassica oleracea after wastewater irrigation. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-022-01351-4

    Article  Google Scholar 

  • Shahid, M., Khalid, M., Dumat, C., Khalid, S., Niazi, N. K., Imran, M., Bibi, I., Ahmad, I., Hammad, H. M., & Tabassum, R. A. (2018). Arsenic level and risk assessment of groundwater in Vehari, Punjab Province. Pakistan. Exposure and Health, 10(4), 229–239.

    CAS  Google Scholar 

  • Sharma, M., & Srivastava, V. K. (2021). In Agra region, compost plays a part in reducing saline soil. International Journal of Research in Engineering, Science and Management, 4(3), 109–111.

    Google Scholar 

  • Shen, X., Chi, Y., & **ong, K. (2019). The effect of heavy metal contamination on humans and animals in the vicinity of a zinc smelting facility. PLoS ONE, 14(10), e0207423.

    CAS  Google Scholar 

  • Shukla, A. K., Behera, S. K., Pakhre, A., & Chaudhary, S. K. (2018). Micronutrients in soils, plants, animals and humans. Indian Journal of Fertilizers, 14(3), 30–54.

    Google Scholar 

  • Siddique, A. B., Rahman, M. M., Islam, M. R., Mondal, D., & Naidu, R. (2021). Response of iron and cadmium on yield and yield components of rice and translocation in grain: Health risk estimation. Frontiers in Environmental Science, 9, 716770.

    Google Scholar 

  • Silva, C. S., Moutinho, C., Ferreira da Vinha, A., & Matos, C. (2019). Trace minerals in human health: Iron, zinc, copper, manganese and fluorine. International Journal of Science and Research Methodology, 13(3), 57–80.

  • Singh, A., Sharma, R. K., Agrawal, M., & Marshall, F. M. (2010). Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food and Chemical Toxicology, 48(2), 611–619.

    CAS  Google Scholar 

  • Sipos, P., & Póka, T. (2002). Threshold limit values for heavy metals in soils in the function of spatial and temporal variation of geochemical factors. In Proceedings of XVII. Congress of Carpathian-Balkan Geological Association Bratislava, September 1st–4th (Vol. 53, pp. 112–125).

  • Srivastava, A., Siddiqui, N. A., Koshe, R. K., & Singh, V. K. (2018). Human health effects emanating from airborne heavy metals due to natural and anthropogenic activities: a review. In N. A. Siddiqui, S. M. Tauseef, & K. Bansal (Eds.), Advances in health and environment safety (pp. 279–296). Springer Singapore.

    Google Scholar 

  • Tahir, M., Iqbal, M., Abbas, M., Tahir, M. A., Nazir, A., Iqbal, D. N., Kanwal, Q., Hassan, F., & Younas, U. (2017). Comparative study of heavy metals distribution in soil, forage, blood and milk. Acta Ecologica Sinica, 37(3), 207–212.

    Google Scholar 

  • United States. Environmental Protection Agency. Information Access Branch, & United States. Environmental Protection Agency. Office of Information Resources Management. (1995). Access EPA. Information Access Branch, Information Management and Services Division, US Environmental Protection Agency.

  • Vareda, J. P., Valente, A. J., & Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 246, 101–118.

    CAS  Google Scholar 

  • Whiteside, M., & Herndon, J. M. (2018). Previously unacknowledged potential factors in catastrophic bee and insect die-off arising from coal fly ash geoengineering. Asian J Biol, 6(4), 1–13.

    Google Scholar 

  • World Health Organization, WHO, World Health Organization Staff. (2004). Guidelines for drinking-water quality (Vol. 1). World Health Organization.

    Google Scholar 

  • Wu, D., Wang, Y., Wang, M., Wei, C., Hu, G., He, X., & Fu, W. (2021). Basic characteristics of coal gangue in a small-scale mining site and risk assessment of radioactive elements for the surrounding soils. Minerals, 11(6), 647.

  • Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642, 690–700.

    CAS  Google Scholar 

  • Yang, Y., Khan, Z. I., Ahmad, K., Arshad, N., Rehman, S. U., Ulla, M. F., Wajid, K., Mahpara, S., Bashir, H., Nadeem, M., & Ahmad, T. (2020). Does the chromium element in forages and fodders grown in contaminated pasture lands cause toxicity in livestock: assessing the potential risk. Revista De Chimie, 71(7), 397–405.

    CAS  Google Scholar 

  • Yuanan, H., He, K., Sun, Z., Chen, G., & Cheng, H. (2020). Quantitative source apportionment of heavy metal (loid) s in the agricultural soils of an industrializing region and associated model uncertainty. Journal of Hazardous Materials, 391, 122244.

    Google Scholar 

  • Zainab, N., Din, B. U., Javed, M. T., Afridi, M. S., Mukhtar, T., Kamran, M. A., Khan, A. A., Ali, J., Jatoi, W. N., Munis, M. F. H., & Chaudhary, H. J. (2020). Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils. Plant Physiology and Biochemistry, 152, 90–99.

    CAS  Google Scholar 

  • Zerizghi, T., Guo, Q., Tian, L., Wei, R., & Zhao, C. (2022). An integrated approach to quantify ecological and human health risks of soil heavy metal contamination around coal mining area. Science of the Total Environment, 814, 152653.

    CAS  Google Scholar 

  • Ziarati, P., Shirkhan, F., Mostafidi, M., & Zahedi, M. T. (2018). An overview of the heavy metal contamination in milk and dairy products. Acta Scientific Pharmaceutical Sciences, 2(7), 1–14.

    Google Scholar 

Download references

Acknowledgements

All authors acknowledge the Quaid-i-Azam University for providing funds (URF-2019) to conduct experimental work.

Funding

Funding was provided by Quaid-i-Azam University, Islamabad, Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

NZ conducted whole research work and wrote the manuscript. SM helped in statistical analysis and manuscript improvement. A helped in manuscript writing and formatting. AM helped in experimental work. ZI provided the facility of atomic absorption spectrophotometer analysis. ZUN helped in statistical analysis. MI helped in manuscript improvement. MTJ helped in statistical analysis and writing manuscript. S-u-R helped in language improvement of manuscript. Dr. HJC supervised the whole experiment and Manuscript writing.

Corresponding author

Correspondence to Hassan Javed Chaudhary.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

On behalf of all authors, the corresponding author declares that all authors are agreed to submit the manuscript in Journal of Environmental Geochemistry and Health.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zainab, N., Mehmood, S., Amna Shafiq-ur-Rehman et al. Health risk assessment and bioaccumulation of potentially toxic metals from water, soil, and forages near coal mines of district Chakwal, Punjab, Pakistan. Environ Geochem Health 45, 5441–5466 (2023). https://doi.org/10.1007/s10653-023-01531-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01531-w

Keywords

Navigation