Log in

Is the co-application of self-produced compost and natural zeolite interesting to reduce environmental and toxicological availability in metal-contaminated kitchen garden soils?

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Composting can turn organic waste into a valuable soil amendment that can improve physical, chemical, and biological soil quality. Compost amendments can also contribute to the remediation of areas anthropogenically degraded by metals. However, it is well known that compost, particularly self-produced compost, can show enrichment in metals. An experimental study was conducted to examine the short- and long-term distribution and the mobility of metals in soils amended with a self-produced compost when it was added alone or in combination with different doses of a natural zeolite to soil. The aim was also to study the interest of managing moderately metal-contaminated kitchen garden soils by assessing the chemical extractability, phytoavailability, and oral bioaccessibility of metals. When zeolite was added to compost alone, it had the tendency to better reduce extractability of Cd and Zn at 25%, and those of Pb at 15%. When the self-produced compost alone or in co-application with zeolite at these doses was applied to soils, the results showed (1) a decrease of NH4NO3-extractable Zn; (2) a reduction of Pb environmental availability, but not Pb bioaccessibility, and (3) an increase of ryegrass biomass. Nevertheless, the risk posed by the self-produced compost was minimal when applied at the proper rate (0.6% w/w). In the selected experimental conditions, the study recommends that self-produced compost be mixed with 15% zeolite to maximize vegetal biomass and minimize environmental risk. The question of sustainability of the results with repeated compost addition is also raised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbaspour, A., & Golchin, A. (2011). Immobilization of heavy metals in a contaminated soil in Iran using di-ammonium phosphate, vermicompost and zeolite. Environmental and Earth Sciences, 63, 925–943.

    Google Scholar 

  • Abdelrahman, Y., Abdellah, Y., Shi, Z., Luo, Y., Hou, W., Yang, X., & Wang, R. (2022). Effects of different additives and aerobic composting factors on heavy metal bioavailability reduction and compost parameters: A meta-analysis. Environmental Pollution, 307, 119549.

    Google Scholar 

  • Ahmad, I., Akhtar, M., Jadoon, I., Imran, M., Imran, M., & Ali, S. (2017). Equilibrium modeling of cadmium biosorption from aqueous solution by compost. Environmental Science and Pollution Research, 24, 5277–5284.

    CAS  Google Scholar 

  • Al Mamun, S., Chanson, G., Benyas, M., Aktar, M., Lehto, N., McDowell, R., Cavanagh, J., Kellermann, L., Clucas, L., & Robinson, B. (2016). Municipal composts reduce the transfer of Cd from soil to vegetables. Environmental Pollution, 213, 8–15.

    CAS  Google Scholar 

  • Alvarenga, P., Gonçalves, A. P., Fernandes, R. M., de Varennes, A., Vallin, G., Duarte, E., et al. (2008). Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Science of the Total Environment, 406, 43–56.

    CAS  Google Scholar 

  • Arancon, N., Edwards, A., Babenko, A., Cannon, J., Galvis, P., & Metzger, J. (2008). Influences of vermicomposts, produced by earthworms and microorganisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of petunias in the greenhouse. Applied Soil Ecology, 39, 91–99.

    Google Scholar 

  • Attanayake, C. P., Hettiarachchi, G. M., Martin, S., & Pierzynski, G. M. (2015). Potential bioavailability of lead, arsenic, and polycuclic aromatic hydrocarbons in compost-amended urban soils. Journal of Environmental Quality, 44, 930–944.

    CAS  Google Scholar 

  • Attanayake, C. P., Hettiarachchi, G. M., Ma, Q., Pierzynski, G. M., & Ransom, M. D. (2017). Lead speciation and in vitro bioaccessibility of compost-amended urban garden soils. Journal of Environmental Quality, 46, 1215–1224.

    CAS  Google Scholar 

  • Avnimelech, Y., Bruner, M., Ezrony, I., Sela, R., & Kochba, M. (1996). Stability indexes for muncipical solid waste compost. Compost Science & Utilization., 4(2), 13–20.

    Google Scholar 

  • Awasthi, M., Wang, Q., Chen, H., Liu, T., Awasthi, S., Duan, Y., Varjani, S., Pandey, A., & Zheng, Z. (2019). Role of compost biochar amendment on the (im)mobilization of cadmium and zinc for Chinese cabbage (Brassica rapa L.) from contaminated soil. Journal of Soils and Sediments, 199, 203–209.

    Google Scholar 

  • De Bertoldi, M. (1993). The biology of composting: A review. Waste Management & Research, 1, 157–176.

    Google Scholar 

  • Barrena, R., Font, X., Gabarrell, X., & Sanchez, A. (2014). Home composting versus industrial composting: Influence of composting system on compost quality with focus on compost stability. Waste Management, 34, 1109–1116.

    Google Scholar 

  • Belviso, C. (2020). Zeolite for potential toxic metal uptake from contaminated soil: A brief review. Processes, 8(7), 820.

    CAS  Google Scholar 

  • Businelli, D., Massaccesi, L., Said-Pullicino, D., & Gigliotti, G. (2009). Long-term distribution, mobility and plant availability of compost-derived heavy metals in a landfill covering soil. Science of the Total Environment, 407, 1426–1435.

    CAS  Google Scholar 

  • Carrasquero-Durán, A., & Flores, I. (2009). Evaluation of lead(II) immobilization by a vermicompost using adsorption isotherms and IR spectroscopy. Bioresource Technology, 100, 1691–1694.

    Google Scholar 

  • Chan, M., Selvam, A., & Wong, J. (2016). Reducing nitrogen loss and salinity during “struvite” food waste composting by zeolite amendment. Bioresource Technology, 200, 838–844.

    CAS  Google Scholar 

  • Chelinho, S., Pereira, C., Breitenbach, P., Baretta, D., & Sousa, J. P. (2019). Quality standards for urban waste composts: The need for biological effect data. Science of the Total Environment, 694, 133602.

    CAS  Google Scholar 

  • Chen, G., Zeng, G., Du, C., Huang, D., Tang, L., Wang, L., & Shen, G. (2010). Transfer of heavy metals from compost to red soil and groundwater under simulated rainfall conditions. Journal of Hazardous Materials, 181, 211–216.

    CAS  Google Scholar 

  • Cheng, S., & Hseu, Z. (2002). In-situ immobilization of cadmium and lead by different amendments in two contaminated soils. Water, Air, and Soil Pollution, 140, 73–84.

    CAS  Google Scholar 

  • Chlopecka, A., & Adriano, D. C. (1997). Influence of zeolite, apatite and Fe-oxide on Cd and Pb uptake by crops. Science of the Total Environment, 207(2–3), 195–206.

    CAS  Google Scholar 

  • Colella, C. (1999). Environmental applications of natural zeolitic materials based on their ion exchange properties. Natural microporous materials in environmental technology. Environmental Applied Science, 362, 207–224.

    CAS  Google Scholar 

  • Coppin, P. (2015). Zeolite—A technical summary. Zeolite WA.

  • Dai, H., Wang, X., & Tabakman, S. (2008). Atomic layer deposition of metal oxides on pristine and functionalized graphene. Journal of the American Chemical Society, 130(26), 8152–8153.

  • Damian, F., Damian, G., Lacatusi, C., Postolache, G., Iepure, G., Jelea, M., & Nasui, D. (2013). The heavy metals immobilization in polluted soils from Romania by the natural zeolites use. Carpathian Journal of Earth and Environmental Sciences, 8, 231–250.

    Google Scholar 

  • Das, B., Pandit, M., Ray, K., Bhattacharyya, K., Pari, A., & Sidhya, P. (2016). Impact of irrigation and organic matter amendments on arsenic accumulation in selected vegetables. Plant Soil and Environment, 62, 266–273.

    CAS  Google Scholar 

  • Estrella-González, M., Suárez-Estrella, F., Jurado, M., López, M., López-González, J., Siles-Castellano, A., Muñoz-Mérida, A., & Moreno, J. (2020). Uncovering new indicators to predict stability, maturity and biodiversity of compost on an industrial scale. Bioresource Technology, 313, 123557.

    Google Scholar 

  • Fang, W., Delapp, R. C., Kosson, D. S., van der Sloot, H., & Liu, J. (2017). Release of heavy metals during long-term land application of sewage sludge compost: Percolation leaching tests with repeated additions of compost. Chemosphere, 169, 271–280.

    CAS  Google Scholar 

  • Florido, M., Madrid, F., Madrid, L. (2011). Effect of an organic amendment on availability and bio-accessibility of some metals in soils of urban recreational areas. Environmental Pollution, 159(2), 383–390.

  • Forster, J., Zech, W., & Wurdinger, E. (1993). Comparison of chemical and microbiological methods for the characterization of the maturity of composts from contrasting sources. Biology and Fertility of Soils, 16, 93–99.

    CAS  Google Scholar 

  • Garau, M., Garau, G., Diquattro, S., Roggero, P. P., & Castaldi, P. (2019). Mobility, bioaccessibility and toxicity of potentially toxic elements in a contaminated soil treated with municipal solid waste compost. Ecotoxicology and Environmental Safety, 186, 109766.

    CAS  Google Scholar 

  • Grimes, S. M., Taylor, G. H., & Cooper, J. (1999). The availability and binding of heavy metals in compost derived from household waste. Journal of Chemical Technology and Biotechnology, 74, 1125–1130.

    CAS  Google Scholar 

  • Gryschko, R., Kuhnle, R., Terytze, K., Breuer, J., & Stahr, K. (2005). Soil extraction of readily soluble heavy metals and As with 1 M NH4NO3-solution—Evaluation of DIN 19730 (6 pp). Journal of Soils and Sediments, 5, 101–106.

    CAS  Google Scholar 

  • Gunes, A., Inal, A., Taskin, M., Sahin, O., Kaya, E., & Atakol, A. (2014). Effect of phosphorus-enriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativa L. cv.) grown in alkaline soil. Soil Use and Management, 30, 182–188.

    Google Scholar 

  • Hamidpour, M., Akbari, L., & Shirani, H. (2017). Effects of co-application of zeolites and vermicompost on speciation and phytoavailability of cadmium, lead, and zinc in a contaminated soil. Communications in Soil Science and Plant Analysis, 48, 262–273.

    CAS  Google Scholar 

  • Hashimoto, Y., Yamaguchi, N., Takaoka, M., & Shiota, K. (2011). EXAFS speciation and phytoavailability of Pb in a contaminated soil amended with compost and gypsum. Science of the Total Environment, 409(5), 1001–1007.

  • He, D., Cui, J., Gao, M., Wang, W., Zhou, J., Yang, J., Yang, J., Wang, J., Li, Y., Jiang, C., & Peng, Y. (2019). Effects of soil amendments applied on cadmium availability, soil enzyme activity, and plant uptake in contaminated purple soil. Science of the Total Environment, 654, 1364–1371.

    CAS  Google Scholar 

  • Herwijnen, R., Hutchings, T., Al-Tabbaa, A., Moffat, A., Johns, M., & Ouki, S (2007). Remediation of metal contaminated soil with mineral-amended composts. Environmental Pollution, 150, 347–354.

  • Hettiarachchi, G., Pierzynski, G., Oehme, F., Sonmez, O., & Ryan, J. (2003). Treatment of contaminated soil with phosphorus and manganese oxide reduces lead absorption by Sprague–Dawley rats. Journal of Environmental Quality., 32, 1335–1345.

    CAS  Google Scholar 

  • Houba, V. J. G. M., Temninghoff, E. J. M., Garikhorst, G. A., & Van Vark, W. (2000). Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Communications in Soil Science and Plant Analysis, 31, 1299–1396.

    CAS  Google Scholar 

  • Ibrahimi, M., & Sayyadi, A. (2015). Application of natural and modified zeolites in removing heavy metal cations from aqueous media: An overview of including parameters affecting the process. International Journal of Geology, Agriculture & Environmental Sciences, 3, 1–7.

    Google Scholar 

  • Iglesias-Jimenez, A., & Perez-Garcia, V. (1989). Evaluation of city refuse compost maturity: A review. Biological Wastes, 27, 115–142.

    CAS  Google Scholar 

  • Kaschl, A., Römheld, V., & Chen, Y. (2002). Trace metal distribution in soluble organic matter from municipal solid waste compost determined by size-exclusion chromatography. Environmental Toxicology and Chemistry, 21, 1775–1782.

    CAS  Google Scholar 

  • Kim, K., Kim, J., Park, J., Kim, M., Owens, G., Youn, G., & Lee, J. (2012). Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production. Journal of Environmental Management, 102, 88–95.

    CAS  Google Scholar 

  • Koo, N., Kim, K., Park, J., Kim, M., Lee, S., Kim, S., Yang, J., & Kim, J. (2010). Changes in heavy metal phytoavailability by application of immobilizing agents and soil cover in the upland soil nearby abandoned mining area and subsequent metal uptake by red pepper. Korean Journal of Soil Science and Fertilizer, 43(6), 864–871.

  • Kumpiene, J., Antelo, J., Brännvall, E., Carabante, I., Ek, K., Komarek, M., Söderberg, C., & Warell, L. (2019). In situ chemical stabilization of trace element-contaminated soil—Field demonstrations and barriers to transition from laboratory to the field—A review. Applied Geochemistry, 100, 335–351.

    CAS  Google Scholar 

  • Latifah, O., Ahmed, O. H., Susilawati, K., & Majid, N. M. (2015). Compost maturity and nitrogen availability by co-composting of paddy husk and chicken manure amended with clinoptilotite zeolite. Waste Management, 33, 322–331.

    CAS  Google Scholar 

  • Lebourg, A., Sterckeman, T., Ciesielski, H., Proix, N., & Gomez, A. (1998). Estimation of soil trace metal bioavailability using unbuffered salt solutions: Degree of saturation of polluted soil extracts. Environmental Technology, 19, 243–252.

    CAS  Google Scholar 

  • Leschine, S. (1995). Cellulose degradation in anaerobic environments. Annual Review of Microbiology, 49, 399–426.

    CAS  Google Scholar 

  • Li, Z., Zhu, W., & Guo, X. (2015). Effects of combined amendments on growth and heavy metal uptake by Pakchoi (Brassica chinensis L.) planted in contaminated soil. Polish Journal of Environmental Studies, 24(6), 2493–2501.

    CAS  Google Scholar 

  • Liénard, A., Leclercq, J., Brostaux, Y., & Colinet, G. (2016). Limiter les transferts sol-plante par ajout d'amendements organiques dans les jardins potagers contaminés, une solution de gestion discutable. Biotechnologie, Agronomie, Société et Environnement.

  • Lin, C. F., Lo, S. S., Lin, H. Y., & Lee, Y. (1998). Stabilization of cadmium contaminated soils using synthesized zeolite. Journal of Hazardous Materials, 60(3), 217–226.

    CAS  Google Scholar 

  • Liu, L., Wang, S., Guo, X., & Wang, H. (2019). Comparison of the effects of different maturity composts on soil nutrient, plant growth and heavy metal mobility in the contaminated soil. Journal of Environmental Management, 250, 109525.

    CAS  Google Scholar 

  • Mahabadi, A. A., Hajabbasi, M. A., Khademi, H., & Kazemian, H. (2007). Soil cadmium stabilization using an Iranian natural zeolite. Geoderma, 137(3–4), 388–393.

    CAS  Google Scholar 

  • Mao, H., Zhang, H., Fu, Q., Zhong, M., Li, R., Zhai, B., & Zhou, L. (2019). Effects of four additives in pig manure composting on greenhouse gas emission reduction and bacterial community change. Bioresource Technology, 292, 121896.

    CAS  Google Scholar 

  • McBride, M. B., Shayler, H. A., Spliethoff, H. M., Mitchell, R. C., Marquez-Bravo, L. G., Ferenz, G. S., Russel-Anelli, J. M., Casey, L., & Bachman, S. (2014). Concentrations of lead, cadmium and barium in urban garden-grown vegetables: The impact of soil variables. Environmental Pollution, 194, 254–261.

    CAS  Google Scholar 

  • McLaughlin, M. J., Tiller, K. G., Naidu, R., & Stevens, D. P. (1996). Review: The behaviour and environmental impact of contaminants in fertilizers. Australian Journal of Soil Research, 34(1), 1–54.

  • Misaelides, P. (2011). Application of natural zeolites in environmental remediation: A short review. Microporous and Mesoporous Materials, 144, 15–18.

    CAS  Google Scholar 

  • Monasterio-Guillot, L., Alvarez-Lloret, P., Ibañez-Velasco, A., Fernandez-Martinez, A., Ruiz-Agudo, E., & Rodriguez-Navarro, C. (2020). CO2 sequestration and simultaneous zeolite production by carbonation of coal fly ash: Impact on the trap** of toxic elements. Journal of CO2 Utilization, 40, 101263.

    CAS  Google Scholar 

  • Montiel-Rozas, M., Madejón, E., & Madejón, P. (2016). Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination. Environmental Pollution, 216, 273–281.

  • Moreno, J., Garcia, C., Hernandez, T., & Ayuso, M. (1997). Application of composted sewage sludges contaminated with heavy metals to an agricultural soil. Soil Science and Plant Nutrition, 43, 565–573.

    CAS  Google Scholar 

  • Mozgawa, W., Krol, M., & Bajda, T. (2009). Application of IR spectra in the studies of heavy metal cations immobilization on natural sorbents. Journal of Molecular Structure, 924–926, 427.

    Google Scholar 

  • Murray, H., Pinchin, T. A., & Macfie, S. M. (2011). Compost application affects metal uptake in plants grown in urban garden soils and potential human health risk. Journal of Soils and Sediments, 11, 815–829.

  • Oren, A. H., & Kaya, A. (2006). Factors affecting adsorption characteristics of Zn2+ on two natural zeolites. Journal of Hazardous Materials, 131, 59–65.

    Google Scholar 

  • Oste, L., Temminghoff, E., & Riemsdijk, W. (2002). Solid-solution partitioning of organic matter in soils as influenced by an increase in pH or Ca concentration. Environmental Science & Technology, 36, 208–214.

  • Paradelo, R., Villada, A., Devesa-Rey, R., Moldes, A., Dominguez, M., Patino, J., & Barral, M. (2011a). Distribution and availability of trace elements in municipal solid waste composts. Journal of Environmental Monitoring, 13, 201–211.

    CAS  Google Scholar 

  • Paradelo, R., Villada, A., & Barral, M. T. (2011b). Reduction of the short-term availability of copper, Lead, and zinc in a contaminated soil amended with municipal solid waste compost. Journal of Hazardous Materials, 188, 98–104.

    CAS  Google Scholar 

  • Pelfrêne, A., Sahmer, K., Waterlot, C., Glorennec, P., Douay, F., & Le Bot, B. (2020). Evaluation of single-extraction methods to estimate the oral bioaccessibility of metal(loid)s in soils. Science of the Total Environment, 727, 138553.

    Google Scholar 

  • Pennanen, T., Srivastava, V., Sillanpää, M., & Sainio, T. (2020). Compost: Potent biosorbent for the removal of heavy metals from industrial and landfill stormwater. Journal of Cleaner Production, 273, 122736.

    CAS  Google Scholar 

  • Phillips, I. R. (1998). Use of soil amendments to reduce nitrogen, phosphorus and heavy metal availability. Soil and Sediment Contamination, 7(2), 191–212.

    CAS  Google Scholar 

  • Planquart, P., Bonin, G., Prone, A., & Massiani, C. (1999). Distribution, movement and plant availability of trace metals in soils amended with sewage sludge composts: Application to low metal loadings. Science of the Total Environment, 241, 161–179.

    CAS  Google Scholar 

  • Quenea, K., Lamy, I., Winterton, P., Bermond, A., & Dumat, C. (2009). Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with wastewater. Geoderma, 1, 217–223.

    Google Scholar 

  • Querol, X., Alastuey, A., Moreno, N., Alvarez-Ayuso, E., García-Sánchez, A., Cama, J., & Simón, M. (2006). Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash. Chemosphere, 62(2), 171–180.

    CAS  Google Scholar 

  • Quevauviller, P. (1998). Operationally defined extraction procedures for soil and sediment analysis, IStandarization. Analytical Chemistry, 17, 289–298.

    CAS  Google Scholar 

  • Rauret, G., Lopez-Sandez, J. F., Sahuquillo, A., Barahona, E., Lachica, M., Ure, A. M., Davidson, C. M., Gomez, A., Lück, D., Bacon, J., Yli-Halla, M., Muntau, H., & Quevauviller, P. (2000). Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil certified reference material. Journal of Environmental Monitoring, 2, 228–233.

    CAS  Google Scholar 

  • Reddy, K., Mohanty, M., Rao, D., Singh, M., Rao, A., Pandey, M., Blamey, F., Dalal, R., Dixit, S., & Menzies, N. (2015). Nutrientmass balances and leaching losses from a farmyard manure pit in Madhya Pradesh. Journal of the Indian Society of Soil Science, 63(1), 64–68.

  • Reichman, S. (2002). The responses of plants to metal toxicity: A review focusing on Cu, Mn, and Zn. In AMEEF Paper 14. Australian Minerals and Energy Environment Foundation (ISBN: 1-876205-13-X).

  • Rengel, Z. (2002). Genetic control of root exudation. Plant and Soil, 245, 59–70.

    CAS  Google Scholar 

  • Richard, T. L. (1992). Municipal solid waste composting: Physical and biological processing. Biomass and Bioenergy, 3, 163–180.

    CAS  Google Scholar 

  • Roletto, E., Cerruti, M., & Barberis, R. (1985). Investigation on humic substances from decomposing spruce bark. Agricultural Wastes, 13, 137–148.

    CAS  Google Scholar 

  • Sahuquillo, A., Rigol, A., & Rauret, G. (2003). Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. Trends in Analytical Chemistry, 22(3), 152–159.

    CAS  Google Scholar 

  • Shi, W., Shao, H., Li, H., Shao, M., & Du, S. (2009). Co-remediation of the lead-polluted garden soil by exogenous natural zeolite and humic acids. Journal of Hazardous Materials, 167, 136–140.

    CAS  Google Scholar 

  • Singh, J., & Kalamdhad, A. S. (2012). Reduction of heavy metals during composting-a review. International Journal of Environmental Protection, 2, 36–43.

  • Singh, A., & Prasad, S. M. (2014). Effect of agro-industrial waste amendment on Cd uptake in Amaranthus caudatus grown under contaminated soil: An oxidative biomarker response. Ecotoxicological and Environmental Safety, 100, 105–113.

    CAS  Google Scholar 

  • Smith, E., Kempson, I., Juhasz, A., Weber, J., Rofe, A., & Gancarz, D. (2011). In vivo–in vitro and XANES spectroscopy assessments of lead bioavailability in contaminated peri-urban soils. Environmental Science and Technology, 45, 6145–6152.

    CAS  Google Scholar 

  • Soudejani, H., Heidarpour, M., Shayannejad, M., Kazemian, H., Shariatmadari, H., & Afyuni, M. (2019). Improving quality of municipal solid waste compost through Mg modified zeolite. Journal of Agricultural Science and Technology, 21, 747–760.

    Google Scholar 

  • Sterckeman, T., Douay, F., Proix, N., Fourrier, H., & Perdrix, E. (2002). Assessment of the contamination of cultivated soil by eighteen trace elements around smelters in the north of France. Water, Air, and Soil Pollution, 135, 173–194.

    CAS  Google Scholar 

  • Storino, F., Aritzmendiarrieta, J. S., Irigoyen, I., Muro, J., & Aparicio-Tejo, P. M. (2016). Meat waste as feedstock for home composting: Effects on the process and quality of compost. Waste Management, 56, 53–62.

    CAS  Google Scholar 

  • Szolnoki, Zs., Farsang, A., & Puskas, I. (2013). Cumulative impacts of human activities on urban garden soils: Origin and accumulation of metals. Environmental Pollution, 177, 106–115.

    CAS  Google Scholar 

  • Usman, A., Kuzyakov, Y., & Stahr, K. (2005). Effect of immobilizing substances and salinity on heavy metals availability to wheat grown on sewage sludge-contaminated soil. Soil and Sediment Contamination: An International Journal, 14, 329–344.

    CAS  Google Scholar 

  • Vasquez, M. A., & Soto, M. (2017). The efficiency of home composting programs and compost quality. Waste Management, 64, 39–50.

    Google Scholar 

  • Vaverkova, M. D., Elbl, J., Voberkova, S., Koda, E., Adamcova, D., Gusiatin, Z. G., Al Rahman, A., Radziemska, M., & Mazue, Z. (2020). Composting versus mechanical-biological treatment: Does it really make a difference in the final product parameters and maturity. Waste Management, 106, 173–183.

    CAS  Google Scholar 

  • Vrinceanu, N., Motelica, D., Dumitru, M., Calciu, I., Tănase, V., & Preda, M. (2019). Assessment of using bentonite, dolomite, natural zeolite and manure for the immobilization of heavy metals in a contaminated soil: The Copșa Mică case study (Romania). CATENA, 176, 336–342.

    CAS  Google Scholar 

  • Waitt, G., & Rankin, K. (2022). Towards household sustainability? Experimenting with composting food waste. Geoforum, 129, 98–106.

    Google Scholar 

  • Wang, Q., Awasthi, M. K., Ren, X., Zhao, J., Li, R., Wang, Z., Chen, H., Wang, M., & Zhang, Z. (2017). Comparison of biochar, zeolite and their mixture amendment for aiding organic matter transformation and nitrogen conservation during pig manure composting. Bioresource Technology, 245, 300–308.

    CAS  Google Scholar 

  • Waqas, M., Nizami, A. S., Aburiazaiza, A. S., Barakat, M. A., Asam, Z. Z., Khattak, B., & Rashid, M. I. (2019). Untapped potential of zeolites in optimization of food waste composting. Journal of Environmental Management, 241, 99–112.

    CAS  Google Scholar 

  • Waterlot, C., Bidar, G., Pruvot, C., & Douay, F. (2012). Effects of grinding and shaking on Cd, Pb and Zn distribution in anthropogenically impacted soils. Talanta, 98, 185–196.

    CAS  Google Scholar 

  • Wee, J. (2013). A review on carbon dioxide capture and storage technology using coal fly ash. Applied Energy, 106, 143–151.

    CAS  Google Scholar 

  • Welikala, D., Hucker, C., Hartland, A., Robinson, B., & Lehto, N. (2018). Trace metal mobilization by organic soil amendments: Insights gained from analyses of solid and solution phase complexation of cadmium, nickel, and zinc. Chemosphere, 199, 684–693.

    CAS  Google Scholar 

  • WRAP (2014). Guidelines for the Specification of Quality Compost for Use in Growing Media. Report (pp. 14).

  • Zhang, L., & Sun, X. (2015). Effects of earthworm casts and zeolite on the two-stage composting of green waste. Waste Management, 39, 119–129.

    CAS  Google Scholar 

  • Zhu, Q. H., Huang, D. Y., Liu, S. L., Zhou, B., Luo, Z. C., & Zhu, H. H. (2012a). Flooding enhanced immobilization effect of sepiolite on cadmium in paddy soil. Journal of Soils and Sediments, 12, 169–177.

    CAS  Google Scholar 

  • Zhu, Q. H., Huang, D. Y., Liu, S. L., Luo, Z. C., Zhu, H. H., Zhou, B., Lei, M., Rao, Z. X., & Cao, X. L. (2012b). Assessment of single extraction methods for evaluating the immobilization effect of amendments on cadmium in contaminated acidic paddy soil. Plant, Soil and Environment, 58, 98–103.

    CAS  Google Scholar 

  • Zorpas, A., Vlyssides, A., & Loizidou, M. (1999). Dewatered anaerobically-stabilized primary sewage sludge composting: metal leachability and uptake by natural Clinoptilolite. Communications in Soil Science and Plant Analysis, 30, 1603–1613.

Download references

Acknowledgements

The authors wish to thank ADEME (Agency for Ecological Transition), and more specifically Franck Marot, for the financial support of this research (contract n°1972C0005).

Author information

Authors and Affiliations

Authors

Contributions

AS: conceptualization, methodology, data acquisition and analysis, statistical analysis, writing and editing original draft; MB: methodology, data acquisition and analysis, writing review editing; GB: conceptualization, methodology, supervision, writing review editing; FD: conceptualization, supervision, methodology, writing review editing; AP: conceptualization (lead), supervision, methodology, data acquisition and analysis, writing original draft.

Corresponding author

Correspondence to Ashley Schnackenberg.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schnackenberg, A., Billmann, M., Bidar, G. et al. Is the co-application of self-produced compost and natural zeolite interesting to reduce environmental and toxicological availability in metal-contaminated kitchen garden soils?. Environ Geochem Health 45, 4737–4760 (2023). https://doi.org/10.1007/s10653-023-01505-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01505-y

Keywords

Navigation