Log in

PM2.5 levels, chemical composition and health risk assessment in **nxiang, a seriously air-polluted city in North China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Seventeen PM2.5 samples were collected at **nxiang during winter in 2014. Nine water-soluble ions, 19 trace elements and eight fractions of carbonaceous species in PM2.5 were analyzed. PM2.5 concentrations and elements species during different periods with different pollution situations were compared. The threat of heavy metals in PM2.5 was assessed using incremental lifetime cancer risk. During the whole period, serious regional haze pollution persisted, and the averaged concentration of PM2.5 was 168.5 μg m−3, with 88.2 % of the daily samples exhibiting higher PM2.5 concentrations than the national air quality standard II. The high NO3 /SO4 2− ratio suggested that vehicular exhaust made an important contribution to atmospheric pollution. All of organic carbon and elemental carbon ratios in this study were above 2.0 for PM2.5, which might reflect the combined contributions from coal combustion, motor vehicle exhaust and biomass burning. Mean 96-h backward trajectory clusters indicated that more serious air pollution occurred when air masses transported from the Hebei, Shanxi and Zhengzhou. The concentrations of the water-soluble ions and trace elements on haze days were 2 and 1.8 times of those on clear days. The heavy metals in PM2.5 might not cause non-cancerous health issues by exposure through the human respiratory system. However, lifetime cancer risks of heavy metals obviously exceeded the threshold (10−6) and might have a cancer risk for residents in **nxiang. This study provided detailed composition data and comprehensive analysis of PM2.5 during the serious haze pollution period and their potential impact on human health in **nxiang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asman, W. A. H., Sutton, M. A., & Schjorring, J. K. (1998). Ammonia: Emission, atmospheric transport and deposition. New Phytologist, 139(1), 27–48.

    Article  CAS  Google Scholar 

  • Borge, R., Lumbreras, J., Vardoulakis, S., Kassomenos, P., & Rodriguez, E. (2007). Analysis of long-range transport influences on urban PM10 using two-stage atmospheric trajectory clusters. Atmospheric Environment, 41(21), 4434–4450.

    Article  CAS  Google Scholar 

  • Cao, J. J., Lee, S. C., Chow, J. C., Watson, J. G., Ho, K. F., Zhang, R. J., et al. (2007). Spatial and seasonal distributions of carbonaceous aerosols over China. Journal of Geophysical Research. doi:10.1029/2006JD008205.

  • Cheng, Z., Wang, S., Jiang, J., Fu, Q., Chen, C., Xu, B., et al. (2013). Long-term trend of haze pollution and impact of particulate matter in the Yangtze river delta, China. Environmental Pollution, 182, 101–110.

    Article  CAS  Google Scholar 

  • Chow, J. C., Watson, J. G., Lu, Z., Lowenthal, D. H., Frazier, C. A., Solomon, P. A., et al. (1996). Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmospheric Environment, 30(12), 2079–2112.

    Article  CAS  Google Scholar 

  • Dawson, J. P., Adams, P. J., & Pandis, S. N. (2007). Sensitivity of PM2.5 to climate in the eastern US: A modeling case study. Atmospheric Chemistry and Physics, 7(16), 4295–4309.

    Article  CAS  Google Scholar 

  • Dimitriou, K., & Kassomenos, P. (2014). Indicators reflecting local and transboundary sources of PM2.5 and PMCOARSE in Rome-impacts in air quality. Atmospheric Environment, 96, 154–162.

    Article  CAS  Google Scholar 

  • Feng, J., Sun, P., Hu, X., Zhao, W., Wu, M., & Fu, J. (2012). The chemical composition and sources of PM2.5 during the 2009 Chinese new year’s holiday in Shanghai. Atmospheric Research, 118, 435–444.

    Article  CAS  Google Scholar 

  • Granero, S., & Domingo, J. L. (2002). Levels of metals in soils of Alcalá de Henares, Spain. Environment International, 28(3), 159–164.

    Article  CAS  Google Scholar 

  • Gray, H. A., Cass, G. R., Huntzicker, J. J., Heyerdahl, E. K., & Rau, J. A. (1986). Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles. Environmental Science and Technology, 20(6), 580–589.

    Article  CAS  Google Scholar 

  • Hernandez, L., Probst, A., Probst, J. L., & Ulrich, E. (2003). Heavy metal distribution in some french forest soils: Evidence for atmospheric contamination. Science of the Total Environment, 312(1–3), 195–219.

    Article  CAS  Google Scholar 

  • Hsu, S. C., Liu, S. C., Tsai, F., Engling, G., Lin, I. I., Chou, C. K. C., et al. (2010). High wintertime particulate matter pollution over an offshore island (Kinmen) off Southeastern China: An overview. Journal of Geophysical Research, 115(D17), 1383–1392.

    Article  Google Scholar 

  • Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., et al. (2014). High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514(7521), 218–222.

  • Huang, K., Zhuang, G., Lin, Y., Wang, Q., Fu, J. S., Zhang, R., et al. (2012). Impact of anthropogenic emission on air quality over a megacity—Revealed from an intensive atmospheric campaign during the Chinese spring festival. Atmospheric Chemistry and Physics, 12(23), 11631–11645.

    Article  CAS  Google Scholar 

  • Ianniello, A., Spataro, F., Esposito, G., Allegrini, I., Rantica, E., Ancora, M. P., et al. (2010). Occurrence of gas phase ammonia in the area of Bei**g (China). Atmospheric Chemistry and Physics, 10(19), 9487–9503.

    Article  CAS  Google Scholar 

  • Jung, J., Lee, H., Kim, Y. J., Liu, X., Zhang, Y., Gu, J., et al. (2009). Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River delta campaign. Journal of Environmental Management, 90(11), 3231–3244.

    Article  CAS  Google Scholar 

  • Kong, S. F., Li, L., Li, X. X., Yin, Y., Chen, K., Liu, D. T., et al. (2015). The impacts of firework burning at the Chinese spring festival on air quality: Insights of tracers, source evolution and aging processes. Atmospheric Chemistry and Physics, 15(4), 2167–2184.

    Article  CAS  Google Scholar 

  • Kong, S., Lu, B., Ji, Y., Zhao, X., Bai, Z., Xu, Y., et al. (2012). Risk assessment of heavy metals in road and soil dusts within PM2.5, PM10 and PM100 fractions in Dongying city, Shandong province, china. Journal of Environmental Monitoring, 14(3), 791.

    Article  CAS  Google Scholar 

  • Kulshrestha, U. C., Nageswara Rao, T., Azhaguvel, S., & Kulshrestha, M. J. (2004). Emissions and accumulation of metals in the atmosphere due to crackers and sparkles during Diwali festival in India. Atmospheric Environment, 38(27), 4421–4425.

    Article  CAS  Google Scholar 

  • Li, X., Guo, X., Liu, X., Liu, C., Zhang, S., & Wang, Y. (2009). Distribution and sources of solvent extractable organic compounds in PM2.5 during, 2007 Chinese spring festival in Bei**g. Journal of Environmental Sciences, 21(2), 142–149.

    Article  CAS  Google Scholar 

  • Li, W., Shi, Z., Yan, C., Yang, L., Dong, C., & Wang, W. (2013). Individual metal-bearing particles in a regional haze caused by firecracker and firework emissions. Science of the Total Environment, 443, 464–469.

    Article  CAS  Google Scholar 

  • Liu, J., Man, Y., & Liu, Y. (2014). Temporal variability of PM10 and PM2.5 inside and outside a residential home during, 2014 Chinese spring festival in Zhengzhou, China. Natural Hazards, 73(3), 2149–2154.

    Article  Google Scholar 

  • Meng, Z. Y., Lin, W. L., Jiang, X. M., Yan, P., Wang, Y., Zhang, Y. M., et al. (2011). Characteristics of atmospheric ammonia over Bei**g, China. Atmospheric Chemistry and Physics, 11(12), 6139–6151.

    Article  CAS  Google Scholar 

  • Ministry of Environmental Protection of the People’s Republic of China. (2014). The Chinese environmental protection standard: Technical guidelines for risk assessment of contaminated sites. Bei**g: Chinese Environment Science Press.

    Google Scholar 

  • Qiao, L., Cai, J., Wang, H., Wang, W., Zhou, M., Lou, S., et al. (2014). PM 2.5 constituents and hospital emergency-room visits in Shanghai, China. Environmental Science and Technology, 48(17), 10406–10414.

    Article  CAS  Google Scholar 

  • Rubio, B., Nombela, M., & Vilas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): An assessment of metal pollution. Marine Pollution Bulletin, 40(11), 968–980.

    Article  CAS  Google Scholar 

  • Schwarz, J., Cusack, M., Karban, J., Chalupníčková, E., Havránek, V., Smolík, J., et al. (2016). PM2.5 chemical composition at a rural background site in central Europe, including correlation and air mass back trajectory analysis. Atmospheric Research, 176–177, 108–120.

    Article  Google Scholar 

  • Schwarz, J., Štefancová, L., Maenhaut, W., Smolík, J., & Ždímal, V. (2012). Mass and chemically speciated size distribution of Prague aerosol using an aerosol dryer—The influence of air mass origin. Science of the Total Environment, 437, 348–362.

    Article  CAS  Google Scholar 

  • Sokolik, I. N., & Toon, O. B. (1996). Direct radiative forcing by airborne mineral aerosols. Journal of Aerosol Science, 27, S11–S12.

    Article  Google Scholar 

  • Sun, Z., Mu, Y., Liu, Y., & Shao, L. (2013). A comparison study on airborne particles during haze days and non-haze days in Bei**g. Science of the Total Environment, 456–457, 1–8.

    Article  Google Scholar 

  • Tan, J., Duan, J., Zhen, N., He, K., & Hao, J. (2016). Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Bei**g. Atmospheric Research, 167, 24–33.

    Article  CAS  Google Scholar 

  • Tang, L., Haeger-Eugensson, M., Sjöberg, K., Wichmann, J., Molnár, P., & Sallsten, G. (2014). Estimation of the long-range transport contribution from secondary inorganic components to urban background PM10 concentrations in south-western Sweden during 1986–2010. Atmospheric Environment, 89, 93–101.

    Article  CAS  Google Scholar 

  • Tao, J., Zhang, L., Engling, G., Zhang, R., Yang, Y., Cao, J., et al. (2013). Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning. Atmospheric Research, 122, 270–283.

    Article  CAS  Google Scholar 

  • Tao, J., Zhang, L., Ho, K., Zhang, R., Lin, Z., Zhang, Z., et al. (2014). Impact of PM2.5 chemical compositions on aerosol light scattering in Guangzhou—The largest megacity in south China. Atmospheric Research, 135–136, 48–58.

    Article  Google Scholar 

  • Tian, Y. Z., Wang, J., Peng, X., Shi, G. L., & Feng, Y. C. (2014). Estimation of the direct and indirect impacts of fireworks on the physicochemical characteristics of atmospheric PM10 and PM2.5. Atmospheric Chemistry and Physics, 14(18), 9469–9479.

    Article  Google Scholar 

  • Turpin, B. J., & Huntzicker, J. J. (1991). Secondary formation of organic aerosol in the Los Angeles basin: A descriptive analysis of organic and elemental carbon concentrations. Atmospheric Environment. Part A. General Topics, 25(2), 207–215.

    Article  Google Scholar 

  • Wang, J., & Ogawa, S. (2015). Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. International Journal of Environmental Research and Public Health, 12(8), 9089–9101.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhuang, G., Tang, A., Yuan, H., Sun, Y., Chen, S., et al. (2005). The ion chemistry and the source of PM2.5 aerosol in Bei**g. Atmospheric Environment, 39(21), 3771–3784.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhuang, G., Xu, C., & An, Z. (2007). The air pollution caused by the burning of fireworks during the lantern festival in Bei**g. Atmospheric Environment, 41(2), 417–431.

    Article  CAS  Google Scholar 

  • Watson, J. G. (2002). Visibility: Science and regulation. Journal of the Air and Waste Management Association, 52, 628–713.

    Article  Google Scholar 

  • Wei, F. S., Chen, J. S., Wu, Y. Y., & Zheng, C. J. (1990). Introduction to background value of soil environment. Bei**g: China Environmental Science Press.

    Google Scholar 

  • WHO. (2006). World Health Organization. Geneva: Switzerland.

    Google Scholar 

  • Wu, D., Tie, X., Li, C., Ying, Z., Kai-Hon Lau, A., Huang, J., et al. (2005). An extremely low visibility event over the Guangzhou region: A case study. Atmospheric Environment, 39(35), 6568–6577.

    Article  CAS  Google Scholar 

  • Wu, D., Wang, Z., Chen, J., Kong, S., Fu, X., Deng, H., et al. (2014a). Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 and PM10 at a coal-based industrial city: Implication for PAH control at industrial agglomeration regions, China. Atmospheric Research, 149, 217–229.

    Article  CAS  Google Scholar 

  • Wu, Y., Yang, L., Zheng, X., Zhang, S., Song, S., Li, J., et al. (2014b). Characterization and source apportionment of particulate PAHs in the roadside environment in Bei**g. Science of the Total Environment, 470–471, 76–83.

    Article  Google Scholar 

  • Xu, L., Chen, X., Chen, J., Zhang, F., He, C., Zhao, J., et al. (2012). Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmospheric Research, 104–105, 264–272.

    Article  Google Scholar 

  • Yang, L., Gao, X., Wang, X., Nie, W., Wang, J., Gao, R., et al. (2014). Impacts of firecracker burning on aerosol chemical characteristics and human health risk levels during the Chinese new year celebration in **an, China. Science of the Total Environment, 476–477, 57–64.

    Article  Google Scholar 

  • Yuan, Q., Li, W., Zhou, S., Yang, L., Chi, J., Sui, X., et al. (2015). Integrated evaluation of aerosols during haze-fog episodes at one regional background site in north China Plain. Atmospheric Research, 156, 102–110.

    Article  CAS  Google Scholar 

  • Zhang, R., **g, J., Tao, J., Hsu, S.-C., Wang, G., Cao, J., et al. (2013). Chemical characterization and source apportionment of PM2.5 in Bei**g: Seasonal perspective. Atmospheric Chemistry and Physics, 13(14), 7053–7074.

    Article  Google Scholar 

  • Zhou, M., Qiao, L., Zhu, S., Li, L., Lou, S., Wang, H., et al. (2016). Chemical characteristics of particulate matters and trajectory influence on air quality in Shanghai during the heavy haze episode in December, 2013. Environmental Science (in Chinese), 37, 1179–1187.

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Scientific Foundation of China (Grant No. 41103071), Program for Science and Technology Innovation talents in universities of Henan Province (14HASTIT049) and Foundation for University Key Teacher by Henan Province (2013GGJS-059), Key Project of Science and Technology in Henan Province (152102310316) and Program for Science and Technology Development in **nxiang (15SF02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **glan Feng or Jianhui Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Yu, H., Liu, S. et al. PM2.5 levels, chemical composition and health risk assessment in **nxiang, a seriously air-polluted city in North China. Environ Geochem Health 39, 1071–1083 (2017). https://doi.org/10.1007/s10653-016-9874-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9874-5

Keywords

Navigation