Log in

Sparse polynomials, redundant bases, gauss periods, and efficient exponentiation of primitive elements for small characteristic finite fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Gauss periods give an exponentiation algorithm that is fast for many finite fields but slow for many other fields. The current paper presents a different method for construction of elements that yield a fast exponentiation algorithm for finite fields where the Gauss period method is slow or does not work. The basic idea is to use elements of low multiplicative order and search for primitive elements that are binomial or trinomial of these elements. Computational experiments indicate that such primitive elements exist, and it is shown that they can be exponentiated fast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. von zur Gathen J, Nöcker MJ (1997) Exponentiation in finite fields: theory and practice. AAECC 97, LNCS 1255:88–133

    MATH  Google Scholar 

  2. Gordon DM (1998) A survey of fast exponentiation methods. J of Algorithms, 27:129–146

    Article  MATH  Google Scholar 

  3. Brickell EF, Gordon DM, McCurley KS, Wilson DB (1992) Fast exponentiation with Eurocrypt 92. LNCS 658:200–207

    Google Scholar 

  4. Lim CH, Lee PJ (1994) More flexible exponentiation with precomputation. Crypto 94, LNCS 839:95–107

    MATH  MathSciNet  Google Scholar 

  5. de Rooij P (1994) Efficient exponentiation using precomputation and vector addition chains. Eurocrypt 94, LNCS 950:389–399

    Google Scholar 

  6. Gao S, von zur Gathen J, Panario D (1998) Orders and cryptographical applications. Math Comp 67:343–352

    Article  MATH  MathSciNet  Google Scholar 

  7. Gao S, Vanstone S (1995) On orders of optimal normal basis generators. Math Comp 64:1227–1233

    Article  MATH  MathSciNet  Google Scholar 

  8. Gao S, von zur Gathen J, Panario D (1995) Gauss periods and fast exponentiation in finite fields. Latin 95, LNCS 911:311–322

    MATH  Google Scholar 

  9. Menezes AJ, Blake IF, Gao S, Mullin RC, Vanstone SA, Yaghoobian T (1993) Applications of finite fields. Kluwer Academic Publisher, Dordrecht

    MATH  Google Scholar 

  10. Mullen RC, Onyszchuk IM, Vanstone SA, Wilson RM (1989) Optimal normal bases in GF(p n). Discrete App. Math 22:149–161

    Article  Google Scholar 

  11. von zur Gathen J, Shparlinski I (1995) Orders of Gauss periods in finite fields. ISAAC 95, LNCS 1004:208–215

    Google Scholar 

  12. von zur Gathen J, Shparlinski I (1999) Constructing elements of large order in finite fields. AAECC 99, LNCS 1719:404–409

    MATH  Google Scholar 

  13. Feisel S, von zur Gathen J, Shokrollahi M (1999) Normal bases via general Gauss periods. Math Comp 68:271–290

    Article  MATH  MathSciNet  Google Scholar 

  14. Kwon S, Kim CH, Hong CP (2003) Efficient exponentiation for a class of finite fields GF(2n) determined by Gauss periods. CHES 03, LNCS 2779:228–242

    Google Scholar 

  15. Tenenbaum G (1995) Introduction to analytic and probabilistic number theory. Cambridge University Press, Cambridge, MA

    MATH  Google Scholar 

  16. Wassermann A (1993) Zur arithmetik in endlichen Körpern. Bayreuther Math 44:147–251

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soonhak Kwon.

Additional information

Communicated by S. Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, S., Kim, C.H. & Hong, C.P. Sparse polynomials, redundant bases, gauss periods, and efficient exponentiation of primitive elements for small characteristic finite fields. Des Codes Crypt 41, 299–306 (2006). https://doi.org/10.1007/s10623-006-9016-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-006-9016-7

Keywords

AMS Classification

Navigation