Log in

Sargassum sagamianum extract protects INS-1 pancreatic β cells against high glucose-induced apoptosis

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

This study investigated the protective effects of Sargassum sagamianum extract (SSE) on INS-1 pancreatic β cells against high glucose-induced oxidative stress and apoptosis. Treatment with glucose at high concentrations (30 mM) caused β cell apoptosis, whereas treatment with SSE protected the β cells from high glucose-induced damage, by recovering the cell viability. Treatment with SSE at concentrations of 10–100 μg/mL decreased lipid peroxidation and intracellular reactive oxygen species and nitric oxide levels, and increased cell viability and insulin secretion in high glucose pretreated INS-1 cells in a dose-dependent manner. Moreover, SSE treatment significantly reduced the expression of pro-apoptotic Bax, cytochrome c, caspase-3, and caspase-9, while the expression of anti-apoptotic Bcl-2 increased. The type of cell death was examined by annexin V/propidium iodide staining, which revealed that SSE treatment markedly reduced high glucose-induced apoptosis. These findings suggest that SSE could be useful as a functional food, protecting pancreatic β cells against high glucose-induced oxidative stress and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  • Bernhard B (2003) Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ 10:864–869

    Article  CAS  Google Scholar 

  • Chikezie PC, Ojiako OA, Ogbuji AC (2015) Oxidative stress in diabetes mellitus. Int J Biol Chem 9:92–109

    Article  CAS  Google Scholar 

  • Choi BW, Ryu G, Park SH et al (2007) Anticholinesterase activity of plastoquinones from Sargassum sagamianum: lead compounds for Alzheimer’s disease therapy. Phytother Res 21:423–426

    Article  CAS  PubMed  Google Scholar 

  • Choi JS, Ha YM, Joo CU, Cho KK, Kim SJ, Choi IS (2012) Inhibition of oral pathogens and collagenase activity by seaweed extracts. J Environ Biol 33:115–121

    PubMed  Google Scholar 

  • Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369–377

    Article  CAS  PubMed  Google Scholar 

  • Diplock AT, Charuleux JL, Crozier-Willi G et al (1998) Functional food science and defence against reactive oxidative species. Br J Nutr 80:77–112

    Article  Google Scholar 

  • Donath MY, Halban PA (2004) Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications. Diabetologia 47:581–589

    Article  CAS  PubMed  Google Scholar 

  • Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Horie S, Tsutsumi S, Takada Y, Kimura J (2008) Antibacterial quinone metabolites from the brown alga, sargassum sagamianum. Bull Chem Soc Jpn 81:1125–1130

    Article  CAS  Google Scholar 

  • Jian Z (2007) Interplay among nitric oxide and reactive oxygen species a complex network determining Cell survival or death. Plant Signal Behav 2:544–547

    Article  Google Scholar 

  • Kaneto H, Kajimoto Y, Miyagawa JI et al (1999) Beneficial effects of antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose toxicity. Diabetes 48:2398–2406

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Kim KBWR, Lee CJ, Kwak JH, Kim DH, Sunwoo C, Jung SA, Kang JY, Kim HJ, Choi JS (2011) Korean J Food Sci Technol 43:723–728

    Article  Google Scholar 

  • Kim MJ, Jeong DH, Ahn DH (2013) Anti-inflammatory activity of ethanolic extract of Sargassum sagamianum in RAW 264.7 cells. Food Sci Biotechnol 22:1113–1120

    Article  CAS  Google Scholar 

  • Kuwana T, Newmeyer DD (2003) Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 15:691–699

    Article  CAS  PubMed  Google Scholar 

  • Lecoeur H, Ledru E, Prévost MC, Gougeon ML (1997) Strategies for phenoty** apoptotic peripheral human lymphocytes comparing ISNT, annexin-V and 7-AAD cytofluorometric staining methods. J Immunol Methods 209:111–123

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Han JS (2018) Sargassum sagamianum extract alleviates postprandial hyperglycemia in diabetic mice. Prev Nutr Food Sci 23:122–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenzen S (2008) Oxidative stress: the vulnerable beta-cell. Biochem Soc Trans 36:343–347

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Heinrich M, Myers S, Dworjanyn SA (2012) Towards a better understanding of medicinal uses of the brown seaweed sargassum in traditional chinese medicine: a phytochemical and pharmacological review. J Ethnopharmacol 142:591–619

    Article  PubMed  Google Scholar 

  • Maechler P, Jornot L, Wollheim CB (1999) Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem 274:27905–27913

    Article  CAS  PubMed  Google Scholar 

  • Mates JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104

    Article  CAS  PubMed  Google Scholar 

  • Miwa I, Ichimura N, Sugiura M, Hamada Y, Taniguchi S (2000) Inhibition of glucose-induced insulin secretion by 4-hydroxy-2-nonenal and other lipid peroxidation products. Endocrinology 141:2767–2772

    Article  CAS  PubMed  Google Scholar 

  • Mouria M, Gukovskaya AS, Jung Y et al (2002) Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. Int J Cancer 98:761–769

    Article  CAS  PubMed  Google Scholar 

  • Nickells RW (1999) Apoptosis of retinal ganglion cells in glaucoma: an update of the molecular pathways involved in cell death. Surv Ophthalmol 43:151–161

    Article  Google Scholar 

  • Paneni F, Beckman HA, Creager MA, Cosentino F (2013) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J 34:2436–2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paolisso G, Scheen A, d’Onofrio F, Lefebvre P (1990) Magnesium and glucose homeostasis. Diabetologia 33:511–514

    Article  CAS  PubMed  Google Scholar 

  • Pi J, Bai Y, Zhang Q, Wong V, Floering LM, Daniel K et al (2007) Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 56:1783–1791

    Article  CAS  PubMed  Google Scholar 

  • Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99

    Article  CAS  PubMed  Google Scholar 

  • Robertson RP (2004) Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279:42351–42354

    Article  CAS  PubMed  Google Scholar 

  • Robertson R, Zhou H, Zhang T, Harmon JS (2007) Chronic oxidative stress as a mechanism for glucose toxicity of the beta cell in type 2 diabetes. Cell Biochem Biophys 48:139–146

    Article  CAS  PubMed  Google Scholar 

  • Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9:180–186

    Article  CAS  PubMed  Google Scholar 

  • Ryu B, Li Y, Qian ZJ, Kim MM, Kim SK (2009) Differentiation of human osteosarcoma cells by isolated phlorotannins is subtly linked to COX-2, iNOS, MMPs, and MAPK signaling: implication for chronic articular disease. Chem Biol Interact 179:192–201

    Article  CAS  PubMed  Google Scholar 

  • Shohei H, Shinsuke T, Yuuki T, Junji K (2008) Antibacterial quinone metabolites from the brown alga, Sargassum sagamianum. Bull Chem Soc Jpn 81:1125–1130

    Article  CAS  Google Scholar 

  • Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  CAS  PubMed  Google Scholar 

  • Surh YJ, Chun KS, Cha HH et al (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res Fundam Mol Mech Mutagen 480:243–268

    Article  Google Scholar 

  • Talchai C, Xuan S, Lin HV, Sussel L, Accili D (2012) Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 150:1223–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiedge M, Lortz S, Drinkgern J, Lenzen S (1997) Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46:1733–1742

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Lee IK, Kang KA et al (2010) Cytoprotective effects of triphlorethol-A against formaldehyde-induced oxidative damage and apoptosis: role of mitochondria-mediated caspase-dependent pathway. J Toxicol Environ Health A 73:1477–1489

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji⁃Sook Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JS., Lee, HA. & Han, J. Sargassum sagamianum extract protects INS-1 pancreatic β cells against high glucose-induced apoptosis. Cytotechnology 71, 389–399 (2019). https://doi.org/10.1007/s10616-019-00295-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-019-00295-5

Keywords

Navigation