Log in

Cryptic speciation and population differentiation in the yellow-nosed albatross species complex

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The two species of yellow-nosed albatross, Atlantic (Thalassarche chlororhynchos) and Indian (T. carteri), are morphologically similar, but they differ in breeding behaviour and distribution. Both species are listed as endangered by the IUCN due to the limited number of breeding sites, threats from introduced predators and diseases, and impact of commercial fishing. We quantified genetic variation between and within the two species. Using nuclear (microsatellites and two nuclear sequences) and mitochondrial (control region) markers, we analysed 354 samples from four breeding islands (Atlantic: Nightingale, Inaccessible, and Gough; Indian: Amsterdam) and bycatch samples from South Africa and New Zealand. In addition to all markers separating the two species, nuclear markers showed Atlantic yellow-nosed albatrosses from Gough Island are genetically distinct from those breeding at Nightingale and Inaccessible Islands in the Tristan da Cunha archipelago. Nuclear markers confirmed that all bycatch samples were Indian yellow-nosed albatrosses, however, the bycatch birds from South Africa and New Zealand were distinct from each other and from birds breeding on Amsterdam Island, suggesting colony specific dispersal at sea. Our study supports the current recognition of two yellow-nosed albatross species and recognises genetically distinct groups of both Atlantic and Indian yellow-nosed albatross breeding on different islands, which is important for their conservation and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Sequencing and genotype data supporting the findings of this study are available at dryad and GenBank.

References

  • Abbott CL, Double MC (2003a) Phylogeography of shy and white-capped albatrosses inferred from mitochondrial DNA sequences: Implications for population history and taxonomy. Mol Ecol 12:2747–2758

    Article  CAS  PubMed  Google Scholar 

  • Abbott CL, Double MC (2003b) Genetic structure, conservation genetics and evidence of speciation by range expansion in shy and white-capped albatrosses. Mol Ecol 12:2953–2962

    Article  PubMed  Google Scholar 

  • Agreement on the Conservation of Albatrosses and Petrels (2009a) ACAP Species assessment: Indian yellow-nosed albatross Thalassarche carteri

  • Agreement on the Conservation of Albatrosses and Petrels (2009b) ACAP Species assessment: Atlantic yellow-nosed albatross Thalassarche chlororhynchos

  • Amaral AR, Beheregaray LB, Bilgmann K, Boutov D, Freitas L, Robertson KM, Sequeira M, Stockin KA, Coelho MM, Möller LM (2012) Seascape genetics of a globally distributed, highly mobile marine mammal: the short-beaked common dolphin (genus Delphinus). PLoS ONE 7:e31482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angel A, Cooper J (2006) A review of the impacts of introduced rodents on the islands of Tristan da Cunha and Gough. Royal Society for the Protection of Birds, Sandy

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Bergek S, Björklund M (2007) Cryptic barriers to dispersal within a lake allow genetic differentiation of Eurasian perch. Evolution 61:2035–2041

    Article  CAS  PubMed  Google Scholar 

  • BirdLife International (2018a) Thalassarche carteri. The IUCN Red List of Threatened Species 2018: e. T22728372A132657962. Downloaded on 20 September 2019

  • BirdLife International (2018b) Thalassarche chlororhynchos. The IUCN Red List of Threatened Species 2018: e.T22698425A132645225. Downloaded on 20 September 2019

  • Bried J, Dubois MP, Jouventin P, Santos RS (2008) Eleven polymorphic microsatellite markers in Cory’s shearwater, Calonectris diomedea, and cross-species amplification on threatened Procellariiformes. Mol Ecol Resour 8:602–604

    Article  CAS  PubMed  Google Scholar 

  • Bugoni L, Mancini PL, Monteiro DS, Nascimiento L, Neves T (2008) Seabird bycatch in the Brazilian pelagic longline fishery and a review of capture rates in the southwestern Atlantic Ocean. Endanger Species Res 5:137–147

    Article  Google Scholar 

  • Burg TM (1999) Isolation and characterization of microsatellites in albatrosses. Mol Ecol 8:338–341

    CAS  PubMed  Google Scholar 

  • Burg TM, Croxall JP (2001) Global relationships amongst black-browed and grey-headed albatrosses: analysis of population structure using mitochondrial DNA and microsatellites. Mol Ecol 10:2647–2660

    Article  CAS  PubMed  Google Scholar 

  • Clement M, Posada DCKA, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Coyne AE, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Cuthbert RJ, Cooper J, Ryan PG (2014) Population trends and breeding success of albatrosses and giant petrels at Gough Island in the face of at-sea and on-land threats. Antarct Sci 26:163–171

    Article  Google Scholar 

  • Dubois MP, Jarne P, Jouventin P (2005) Ten polymorphic microsatellite markers in the wandering albatross Diomedea exulans. Mol Ecol Notes 5:905–907

    Article  CAS  Google Scholar 

  • Earl DA, von Holdt BM (2012) Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite version 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flood RL (2015) The two yellow-nosed albatrosses: molt, age, and identification. Birding 47:36–47

    Google Scholar 

  • Friesen VL, Burg TM, McCoy KD (2007) Mechanisms of population differentiation in seabirds: Invited review. Mol Ecol 16:1765–1785

    Article  CAS  PubMed  Google Scholar 

  • Gales R (1998) Albatross populations: status and threats. In: Robertson G, Gales R (eds) Albatross biology and conservation. Surrey Beatty & Sons, Chip** Norton

    Google Scholar 

  • Gales R, Brothers N, Reid T (1998) Seabird mortality in the Japanese tuna longline fishery around Australia, 1988–1995. Biol Conserv 86:37–56

    Article  Google Scholar 

  • Geffen ELI, Anderson MJ, Wayne RK (2004) Climate and habitat barriers to dispersal in the highly mobile grey wolf. Mol Ecol 13:2481–2490

    Article  CAS  PubMed  Google Scholar 

  • Inchausti P, Weimerskirch H (2002) Dispersal and metapopulation dynamics of an oceanic seabird, the wandering albatross, and its consequences for its response to long-line fisheries. J Anim Ecol 71:765–770

    Article  Google Scholar 

  • Jaeger A, Lebarbenchon C, Bourret V, Bastien M, Lagadec E, Thiebot JB, Boulinier T, Delord K, Barbraud C, Marteau C, Dellagi K, Tortosa P, Weimerskirch H (2018) Avian cholera outbreaks threaten seabird species on Amsterdam Island. PLoS ONE 13:e0197291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones MGW, Techow NMS, Risi MM, Jones CW, Hagens QA, Taylor F, Ryan PG (2020) Hybridisation and cuckoldry between black-browed and grey-headed albatrosses. Antarct Sci 32:10–14. https://doi.org/10.1017/S0954102019000506

    Article  Google Scholar 

  • Knutsen H, Jorde PE, André C, Stenseth NC (2003) Fine-scaled geographical population structuring in a highly mobile marine species: the Atlantic cod. Mol Ecol 12:385–394

    Article  CAS  PubMed  Google Scholar 

  • Makhado AB, Crawford RJM, Dias MP, Dyer BM, Lamont T, Pistorius P, Ryan PG, Upfold L, Weimerskirch H, Reisinger RR (2018) Foraging behaviour and habitat use by Indian yellow-nosed albatrosses (Thalassarche carteri) breeding at Prince Edward Island. Emu 118:353–362

    Article  Google Scholar 

  • Moore PJ, Taylor GA, Amey JM (1997) Interbreeding of black-browed albatross Diomedea m. melanophris and New Zealand black-browed albatross D. m. impavida on Campbell Island. Emu 97:322–324

    Article  Google Scholar 

  • Múrias dos Santos A, Cabezas MP, Tavares AI, Xavier R, Branco M (2016) tcsBU: a tool to extend TCS network layout and visualization. Bioinformatics 32:627–628

    Article  PubMed  CAS  Google Scholar 

  • Nunn GB, Stanley SE (1998) Body size effects and rates of cytochrome b evolution in tube-nosed seabirds. Mol Biol Evol 15:1360–1371

    Article  CAS  PubMed  Google Scholar 

  • Nunn GB, Cooper J, Jouventin P, Robertson CJ, Robertson GG (1996) Evolutionary relationships among extant albatrosses (Procellariiformes: Diomedeidae) established from complete cytochrome-b gene sequences. Auk 113:784–801

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penhallurick J, Wink M (2004) Analysis of the taxonomy and nomenclature of the Procellariiformes based on complete nucleotide sequences of the mitochondrial cytochrome b gene. Emu 104:125–147

    Article  CAS  Google Scholar 

  • Phalan B, Phillips RA, Double MC (2004) A white-capped albatross, Thalassarche [cauta] steadi, at South Georgia: first confirmed record in the south-western Atlantic. Emu 104:359–361

    Article  Google Scholar 

  • Phillips RA, Cooper J, Burg TM (2018) Breeding-site vagrancy and hybridization in albatrosses. Ibis 160:907–913

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rains D, Weimerskirch H, Burg TM (2011) Piecing together the global population puzzle of wandering albatrosses: genetic analysis of the Amsterdam albatross Diomedea amsterdamensis. J Avian Biol 42:69–79

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Rheindt FE, Austin JJ (2005) Major analytical and conceptual shortcomings in a recent taxonomic revision of the Procellariiformes—a reply to Penhallurick and Wink (2004). Emu-Austral Ornithol 105:181–186

    Article  Google Scholar 

  • Riginos C, Nachman MW (2001) Population subdivision in marine environments: the contributions of biogeography, geographical distance and discontinuous habitat to genetic differentiation in a blennioid fish, Axoclinus nigricaudus. Mol Ecol 10:1439–1453

    Article  CAS  PubMed  Google Scholar 

  • Rolland V, Barbraud C, Weimerskirch H (2009) Assessing the impact of fisheries, climate and disease on the dynamics of the Indian yellow-nosed albatross. Biol Conserv 142:1084–1095

    Article  Google Scholar 

  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large datasets. Mol Biol Evol 34:3299–3302

    Article  CAS  PubMed  Google Scholar 

  • Ryan PG, Dilley BJ, Ronconi RA (2019) Population trends of spectacled petrels Procellaria conspicillata and other seabirds at Inaccessible Island. Mar Ornithol 47:257–265

    Google Scholar 

  • Silva MC, Duarte MA, Coelho MM (2011) Anonymous nuclear loci in the white-faced storm-petrel Pelagodroma marina and their applicability to other procellariiform seabirds. J Hered 102:362–365

    Article  PubMed  Google Scholar 

  • Silva MC, Silva MF, Coelho MM (2012) Anonymous nuclear loci in Madeiran storm-petrel Oceanodroma castro (Procellariiformes: Hydrobatidae) and applicability across other procellariiform families. Conserv Genet Resour 4:1093–1095

    Article  Google Scholar 

  • Silva MC, Matias R, Wanless RM, Ryan PG, Stephenson BM, Bolton M, Ferrand N, Coelho MM (2015) Understanding the mechanisms of antitropical divergence in the seabird White-faced storm-petrel (Procellariiformes: Pelagodroma marina) using a multilocus approach. Mol Ecol 24:3122–3137

    Article  PubMed  Google Scholar 

  • Steeves TE, Anderson DJ, Friesen VL (2005) A role for nonphysical barriers to gene flow in the diversification of a highly vagile seabird, the masked booby (Sula dactylatra). Mol Ecol 14:3877–3887

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Elena G-D, Bailie A, Friesen V (2009) Isolation and characterization of microsatellite loci for storm-petrels. Mol Ecol Resour 9:913–915

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor RS, Bolton M, Beard A, Birt T, Deane-Coe P, Raine AF, González-Solís J, Lougheed SC, Friesen VL (2019) Cryptic species and independent origins of allochronic populations within a seabird species complex (Hydrobates spp.). Mol Phylogenet Evol 139:106552

    Article  PubMed  Google Scholar 

  • Viricel A, Rosel PE (2014) Hierarchical population structure and habitat differences in a highly mobile marine species: the Atlantic spotted dolphin. Mol Ecol 23:5018–5035

    Article  PubMed  Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based ty** from forensic material. Biotechniques 10:506–513

    CAS  PubMed  Google Scholar 

  • Wanless RM, Angel A, Cuthbert RJ, Hilton GM, Ryan PG (2007) Can predation by invasive mice drive seabird extinctions? Biol Lett 3:241–244

    Article  PubMed  PubMed Central  Google Scholar 

  • Weimerskirch H (2004) Diseases threaten Southern Ocean albatrosses. Polar Biol 27:374–379

    Article  Google Scholar 

  • Weimerskirch H, Delord K, Fretwell PT, Marteau C, Ryan PG, Barbraud C (2018) Status and trends of albatrosses in the French Southern Territories, western Indian Ocean. Polar Biol 41:1963–1972

    Article  Google Scholar 

  • Wolfaardt AC, Glass J, Glass T (2009) Tristan da Cunha implementation plan for the Agreement on the Conservation of Albatrosses and Petrels (ACAP): review of current work and a prioritised work programme for the future. Tristan da Cunha Government, Tristan da Cunha

    Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Henri Weimerskirch and Thierry Boulinier for providing samples from Amsterdam Island. Ben Dilley assisted with sample collection from Tristan da Cunha archipelago and Gough Island. Belinda Bauer, A Hewer and Tasmanian Museum and Art Gallery generously provided us samples. Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, Alberta Innovates-Technology Futures Graduate Student Scholarship and the Seabird Group provided funding. Special thanks to members of Burg lab, University of Lethbridge for their enormous support.

Funding

Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, Alberta Innovates-Technology Futures Graduate Student Scholarship, and the Seabird Group.

Author information

Authors and Affiliations

Authors

Contributions

PGR and TMB designed the study and PGR performed the fieldwork. ZWD and DKA completed the lab work and DKA led the analyses. DKA and TMB wrote the manuscript with input from the others.

Corresponding author

Correspondence to Dilini K. Abeyrama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abeyrama, D.K., Dempsey, Z.W., Ryan, P.G. et al. Cryptic speciation and population differentiation in the yellow-nosed albatross species complex. Conserv Genet 22, 757–766 (2021). https://doi.org/10.1007/s10592-021-01358-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-021-01358-x

Keywords

Navigation