Log in

Multi-objective task offloading optimization in fog computing environment using INSCSA algorithm

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The presence of limitations such as processing and energy in many of end devices has resulted in task offloading to other sources. To address these limitations, offloading can be performed in diverse environments such as fog or cloud. This article reviews the multi-objective optimization of task offloading, which is a crucial challenge in fog computing. First, a task offloading model is presented for the simultaneous optimization of response time, energy consumption, and cost criteria, while considering availability criteria. This model utilizes a virtual controller to monitor all three layers of IoT, Fog, and Cloud. In the following, a developed version of the multi-objective crow search algorithm called the Improved Non-Dominated Sorting Crow Search Algorithm (INSCSA) is presented. An advantage of this research, compared to previous works, is the investigation of the optimality of the whole system. Evaluations demonstrate that our method has achieved superior results compared to the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Mukherjee, M., Shu, L., Wang, D.: Survey of Fog computing: fundamental, network applications, and research challenges. IEEE Commun. Surv. Tutorials 20(3), 1826–1857 (2018)

    Article  Google Scholar 

  2. Wang, S., Fan, C., Hsu, C.H., Sun, Q., Yang, F.: A Vertical handoff method via self-selection decision tree for internet of vehicles. IEEE Syst. J. 10(3), 1183–1192 (2016)

    Article  Google Scholar 

  3. Zhou, A., Wang, S., Zheng, Z., Hsu, C.H., Lyu, M.R., Yang, F.: On cloud service reliability enhancement with optimal resource usage. IEEE Trans. Cloud Comput. 4(4), 452–466 (2016)

    Article  Google Scholar 

  4. Y. **ao and M. Krunz, “QoE and power efficiency tradeoff for fog computing networks with fog node cooperation,” in IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, 1–9 (2017)

  5. Alameddine, H.A., Sharafeddine, S., Sebbah, S., Ayoubi, S., Assi, C.: Dynamic task offloading and scheduling for low-latency iot services in multi-access edge computing. IEEE J. Sel. Areas Commun. 37(3), 668–682 (2019)

    Article  Google Scholar 

  6. Lan, Y., Wang, X., Wang, D., Liu, Z., Zhang, Y.: Task caching, offloading, and resource allocation in D2D-aided fog computing networks. IEEE Access 7, 104876–104891 (2019)

    Article  Google Scholar 

  7. Deb, K., Deb, K.: Multi-objective optimization, in search methodologies, pp. 403–449. Springer, US, Boston, MA (2014)

    Google Scholar 

  8. P. Ngatchou, A. Zarei, and M. A. El-Sharkawi, “Pareto multi objective optimization,” in Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems, ISAP’05, 2005, vol. 2005, pp. 84–91

  9. Abido, M.A.: A novel multiobjective evolutionary algorithm for environmental/economic power dispatch. Electr. Power Syst. Res. 65(1), 71–81 (2003)

    Article  Google Scholar 

  10. L. Zitzler, Eckart; Deb, Kalyanmoy; Thiele, Comparison of multiobjective evolutionary algorithms: empirical results. 1–51 (2009)

  11. A. M. Andrew, “ Introduction to Evolutionary Computing20042A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing . Berlin: Springer 2003. xv + 299 pp., ISBN: 3‐540‐40184‐9 hardback, £30.00 Natural Computing Series ,” Kybernetes, vol. 33, no. 5/6. 1064–1065 (2004)

  12. Coello Coello, C.A.: A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl. Inf. Syst. 1(3), 269–308 (1999)

    Article  Google Scholar 

  13. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006)

    Article  Google Scholar 

  14. V. De Maio and I. Brandic, “Multi-objective mobile edge provisioning in small cell clouds,” in ICPE 2019 - Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering, 127–138 (2019)

  15. Wu, C., Li, W., Wang, L., Zomaya, A.Y.: An evolutionary fuzzy scheduler for multi-objective resource allocation in fog computing. Futur. Gener. Comput. Syst. 117, 498–509 (2021)

    Article  Google Scholar 

  16. Akbar, A., Ibrar, M., Jan, M.A., Bashir, A.K., Wang, L.: SDN-Enabled adaptive and reliable communication in IoT-Fog environment using machine learning and multiobjective optimization. IEEE Internet Things J. 8(5), 3057–3065 (2021)

    Article  Google Scholar 

  17. Cho, B., **ao, Y.: A repeated unknown game: decentralized task offloading in vehicular fog computing. IEEE Trans. Veh. Technol. (2023). https://doi.org/10.1109/TVT.2023.3275120

    Article  Google Scholar 

  18. Nam, S., Kwak, S., Lee, J., Park, S.: Task offloading based on vehicular edge computing for autonomous platooning. Comput. Syst. Sci. Eng. 46(1), 659–670 (2023)

    Article  Google Scholar 

  19. A. Bozorgchenani, D. Tarchi, and G. E. Corazza, “An Energy and Delay-Efficient Partial Offloading Technique for Fog Computing Architectures,” in 2017 IEEE Global Communications Conference, GLOBECOM 2017—Proceedings, 2018-Janua, 1–6 (2017)

  20. Huang, B., et al.: Security modeling and efficient computation offloading for service workflow in mobile edge computing. Futur. Gener. Comput. Syst. 97, 755–774 (2019)

    Article  Google Scholar 

  21. Adhikari, M., Mukherjee, M., Srirama, S.N.: DPTO: a deadline and priority-aware task offloading in fog computing framework leveraging multilevel feedback queueing. IEEE Internet Things J. 7(7), 5773–5782 (2020)

    Article  Google Scholar 

  22. Xu, X., Gu, R., Dai, F., Qi, L., Wan, S.: Multi-objective computation offloading for Internet of Vehicles in cloud-edge computing. Wirel. Netw. 26(3), 1611–1629 (2020)

    Article  Google Scholar 

  23. Keshavarznejad, M., Rezvani, M.H., Adabi, S.: Delay-aware optimization of energy consumption for task offloading in fog environments using metaheuristic algorithms. Cluster Comput. 24(3), 1825–1853 (2021)

    Article  Google Scholar 

  24. Sun, H., Yu, H., Fan, G., Chen, L.: Energy and time efficient task offloading and resource allocation on the generic IoT-fog-cloud architecture. Peer-to-Peer Netw. Appl. 13(2), 548–563 (2020)

    Article  Google Scholar 

  25. Liu, Y., Yu, F.R., Li, X., Ji, H., Leung, V.C.M.: Distributed resource allocation and computation offloading in fog and cloud networks with non-orthogonal multiple access. IEEE Trans. Veh. Technol. 67(12), 12137–12151 (2018)

    Article  Google Scholar 

  26. Z. Chang, Z. Zhou, T. Ristaniemi, and Z. Niu, “Energy Efficient Optimization for Computation Offloading in Fog Computing System,” in 2017 IEEE Global Communications Conference, GLOBECOM 2017—Proceedings, 2018-Janua, 1–6 (2017)

  27. Sun, J., Gu, Q., Zheng, T., Dong, P., Valera, A., Qin, Y.: Joint optimization of computation offloading and task scheduling in vehicular edge computing networks. IEEE Access 8, 10466–10477 (2020)

    Article  Google Scholar 

  28. Mishra, K., Rajareddy, G.N.V., Ghugar, U., Chhabra, G.S., Gandomi, A.H.: A collaborative computation and offloading for compute-intensive and latency-sensitive dependency-aware tasks in dew-enabled vehicular fog computing: a federated deep q-learning approach. IEEE Trans. Netw. Serv. Manag. (2023). https://doi.org/10.1109/TNSM.2023.3282795

    Article  Google Scholar 

  29. Han, Y., Li, X., Zhou, Z.: Dynamic task offloading and service migration optimization in edge networks. Int. J. Crowd Sci. 7(1), 16–23 (2023)

    Article  Google Scholar 

  30. Abbas Khadir, A., Hosseini Seno, S.A., Fadhil Dhahir, B., Budiarto, R.: Efficient-cost task offloading scheme in fog-internet of vehicle networks. Comput. Syst. Sci. Eng. 45(2), 2223–2234 (2023)

    Article  Google Scholar 

  31. Yu, Z., Zhao, Y., Deng, T., You, L., Yuan, D.: Less carbon footprint in edge computing by joint task offloading and energy sharing. IEEE Netw. Lett. (2023). https://doi.org/10.1109/LNET.2023.3286933

    Article  Google Scholar 

  32. Liu, L., Chang, Z., Guo, X., Mao, S., Ristaniemi, T.: Multiobjective optimization for computation offloading in fog computing. IEEE Internet Things J. 5(1), 283–294 (2018)

    Article  Google Scholar 

  33. Peng, K., et al.: An energy- and cost-aware computation offloading method for workflow applications in mobile edge computing. Eurasip J. Wirel. Commun. Netw. (2019). https://doi.org/10.1186/s13638-019-1526-x

    Article  Google Scholar 

  34. De Maio, V., Kimovski, D.: Multi-objective scheduling of extreme data scientific workflows in Fog. Futur. Gener. Comput. Syst. 106, 171–184 (2020)

    Article  Google Scholar 

  35. Khoobkar, M.H., Takht Fooladi, M.D., Rezvani, M.H., Gilanian Sadeghi, M.M.: Partial offloading with stable equilibrium in fog-cloud environments using replicator dynamics of evolutionary game theory”. Cluster Comput. 25(2), 1393–1420 (2022)

    Article  Google Scholar 

  36. Zhou, S., Jadoon, W.: The partial computation offloading strategy based on game theory for multi-user in mobile edge computing environment. Comput. Netw. 178, 107334 (2020)

    Article  Google Scholar 

  37. Shakarami, A., Shahidinejad, A., Ghobaei-Arani, M.: An autonomous computation offloading strategy in Mobile Edge Computing: a deep learning-based hybrid approach. J. Netw. Comput. Appl. 178, 102974 (2021)

    Article  Google Scholar 

  38. Etemadi, M., Ghobaei-Arani, M., Shahidinejad, A.: Resource provisioning for IoT services in the fog computing environment: an autonomic approach. Comput. Commun. 161, 109–131 (2020)

    Article  Google Scholar 

  39. D. Analysis and S. Nanocomposite, “From Cloud to Fog Computing: A Review and a Conceptual Live VM Migration Framework,” vol. 1, no. d. p. 2016, 2016

  40. Besharati, R., Rezvani, M.H., Sadeghi, M.M.G.: An incentive-compatible offloading mechanism in fog-cloud environments using second-price sealed-bid auction. J. Grid Comput. 19(3), 37 (2021)

    Article  Google Scholar 

  41. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)

    Article  Google Scholar 

  42. Cheng, Q., Huang, H., Chen, M.: A novel crow search algorithm based on improved flower pollination. Math. Probl. Eng. 2021, 1–26 (2021)

    Google Scholar 

  43. Xu, Y., et al.: An enhanced differential evolution algorithm with a new oppositional-mutual learning strategy. Neurocomputing 435, 162–175 (2021)

    Article  Google Scholar 

  44. Chakraborty, S.: TOPSIS and modified TOPSIS: a comparative analysis. Decis. Anal. J. 2, 100021 (2022)

    Article  Google Scholar 

  45. A. A. Alli and M. M. Alam, “SecOFF-FCIoT: Machine learning based secure offloading in Fog-Cloud of things for smart city applications,” Internet of Things (Netherlands), vol. 7. (2019)

  46. Subbaraj, S., Thiyagarajan, R., Rengaraj, M.: A smart fog computing based real-time secure resource allocation and scheduling strategy using multi-objective crow search algorithm. J. Ambient. Intell. Humaniz. Comput. 14(2), 1003–1015 (2023)

    Article  Google Scholar 

  47. Sun, M., Xu, X., Tao, X., Zhang, P.: Large-scale user-assisted multi-task online offloading for latency reduction in D2D-enabled heterogeneous networks. IEEE Trans. Netw. Sci. Eng. 7(4), 2456–2467 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions Statement A. wrote the main manuscript text. B. C. made substantial contributions to the conception or design of the work. All authors reviewed the manuscript.

Corresponding author

Correspondence to Mohammadreza Mollahoseini Ardakani.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fard, A.F., Ardakani, M.M. & Mirzaie, K. Multi-objective task offloading optimization in fog computing environment using INSCSA algorithm. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04311-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04311-y

Keywords

Navigation