Log in

CD-TMS: a combinatorial design-based token management system to enhance security and performance in blockchain

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Blockchain networks are consistently challenged with security and accessibility issues, and technological developments call for the need for their security and integrity more than ever. Security vulnerabilities such as distributed denial-of-service (DDoS) attacks and Eclipse attacks influence public and private blockchains imposing significant losses to the network. Considering the key distribution and management service as a major part of the blockchain architecture, the present study proposes a combinatorial design-based token management system (CD-TMS) while offering optimum accessibility for the blockchain network. Our combinatorial design-based, clustered tokenization system enables the blockchain to prevent DDoS attacks. We also offer a leader selection mechanism relying on a probabilistic tokenization system that reduces communication overhead compared to voting-based systems. In this regard, CD-TMS integrates Balanced incomplete block designs and transversal designs (TD), as well as Eschenauer and Gligor (EG) designs, to distribute tokens on a public blockchain framework (i.e., Bitcoin), though it focuses mainly on DDoS and Eclipse attacks. The performance function, evaluated in terms of security, resiliency, communication overhead, connectivity, reliability, availability, and scalability, has shown the proposed architecture's superiority over conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. https://www.iso.org/standard/72891.html.

References

  1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Business Review, p. 21260 (2008)

  2. Sharma, P.K., Singh, S., Jeong, Y.S., Park, J.H.: Distblocknet: a distributed blockchains-based secure SDN architecture for IoT networks. IEEE Commun. Mag. 55(9), 78–85 (2017). https://doi.org/10.1109/MCOM.2017.1700041

    Article  Google Scholar 

  3. Underwood, S.: Blockchain beyond Bitcoin. Commun. ACM 59(11), 15–17 (2016). https://doi.org/10.1145/2994581

    Article  Google Scholar 

  4. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151(2014), 1–32 (2014)

    Google Scholar 

  5. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the 13th EuroSys Conference, No. 30, pp. 1–15 (2018). https://doi.org/10.1145/3190508.3190538

  6. Zhang, R., Xue, R., Liu, L.: Security and privacy on blockchain. ACM Comput. Surveys (CSUR) 52(3), 1–34 (2019). https://doi.org/10.1145/3316481

    Article  Google Scholar 

  7. Li, X., Jiang, P., Chen, T., Luo, X., Wen, Q.: A survey on the security of blockchain systems. Futur. Gener. Comput. Syst. 107, 841–853 (2020). https://doi.org/10.1016/j.future.2017.08.020

    Article  Google Scholar 

  8. Xu, J.J.: Are blockchains immune to all malicious attacks? Financ. Innov. 2(1), 1–9 (2016). https://doi.org/10.1186/s40854-016-0046-5

    Article  Google Scholar 

  9. Dai, H.N., Zheng, Z., Zhang, Y.: Blockchain for Internet of Things: A survey. IEEE Internet Things J. 6(5), 8076–8094 (2019). https://doi.org/10.1109/JIOT.2019.2920987

    Article  Google Scholar 

  10. Rajasekaran, A.S., Azees, M., Al-Turjman, F.: A comprehensive survey on blockchain technology. Sustain. Energy Technol. Assess. 52, 102039 (2022). https://doi.org/10.1016/j.seta.2022.102039

    Article  Google Scholar 

  11. Homoliak, I., Venugopalan, S., Reijsbergen, D., Hum, Q., Schumi, R., Szalachowski, P.: The security reference architecture for blockchains: toward a standardized model for studying vulnerabilities, threats, and defenses. IEEE Commun. Surveys Tutorials 23(1), 341–390 (2020). https://doi.org/10.1109/COMST.2020.3033665

    Article  Google Scholar 

  12. Uddin, M.A., Stranieri, A., Gondal, I., Balasubramanian, V.: A survey on the adoption of blockchain in IoT: challenges and solutions. Blockchain Res. Appl. 2(2), 100006 (2021). https://doi.org/10.1016/j.bcra.2021.100006

    Article  Google Scholar 

  13. Zheng, Z., **e, S., Dai, H.N., Chen, X., Wang, H.: Blockchain challenges and opportunities: a survey. Int. J. Web Grid Serv. 14(4), 352–375 (2018). https://doi.org/10.1504/IJWGS.2018.095647

    Article  Google Scholar 

  14. Bamakan, S.M.H., Motavali, A., Bondarti, A.B.: A survey of blockchain consensus algorithms performance evaluation criteria. Expert Syst. Appl. 154, 113385 (2020). https://doi.org/10.1016/j.eswa.2020.113385

    Article  Google Scholar 

  15. Makhdoom, I., Abolhasan, M., Abbas, H., Ni, W.: Blockchain’s adoption in IoT: the challenges, and a way forward. J. Netw. Comput. Appl. 125, 251–279 (2019). https://doi.org/10.1016/j.jnca.2018.10.019

    Article  Google Scholar 

  16. Nguyen, G.T., Kim, K.: A survey about consensus algorithms used in blockchain. J. Inf. Process. Syst. 14(1), 101–128 (2018). https://doi.org/10.3745/JIPS.01.0024

    Article  Google Scholar 

  17. Conti, M., Kumar, E.S., Lal, C., Ruj, S.: A survey on security and privacy issues of bitcoin. IEEE Commun. Surveys Tutorials 20(4), 3416–3452 (2018). https://doi.org/10.1109/COMST.2018.2842460

    Article  Google Scholar 

  18. Lyu, Q., Qi, Y., Zhang, X., Liu, H., Wang, Q., Zheng, N.: SBAC: A secure blockchain-based access control framework for information-centric networking. J. Netw. Comput. Appl. 149, 102444 (2020). https://doi.org/10.1016/j.jnca.2019.102444

    Article  Google Scholar 

  19. Masaeli, N., Javadi, H.H.S., Erfani, S.H.: Key pre-distribution scheme based on transversal design in large mobile fog networks with multi-clouds. J. Inf. Security Appl. 54, 102519 (2020). https://doi.org/10.1016/j.jisa.2020.102519

    Article  Google Scholar 

  20. Stinson, D.: Combinatorial Designs: Constructions and Analysis, p. 480. Springer, New York (2007). https://doi.org/10.1007/b97564

  21. Camtepe, S.A., Yener, B.: Combinatorial design of key distribution mechanisms for wireless sensor networks. IEEE/ACM Trans. Netw. 15(2), 346–358 (2007). https://doi.org/10.1109/TNET.2007.892879

    Article  MATH  Google Scholar 

  22. Lee, J., Stinson, D.R.: A combinatorial approach to key predistribution for distributed sensor networks. IEEE Wirel. Commun. Netw. Conf. 2005(2), 1200–1205 (2005). https://doi.org/10.1109/WCNC.2005.1424679

    Article  Google Scholar 

  23. Javanbakht, M., Erfani, H., Javadi, H.H.S., Daneshjoo, P.: Key predistribution scheme for clustered hierarchical wireless sensor networks based on combinatorial designs. Security Commun. Netw. 7(11), 2003–2014 (2014). https://doi.org/10.1002/sec.914

    Article  Google Scholar 

  24. Lee, J., Stinson, D.R.: On the construction of practical key predistribution schemes for distributed sensor networks using combinatorial designs. ACM Trans. Inf. Syst. Security (TISSEC) 11(2), 1–35 (2008). https://doi.org/10.1145/1330332.1330333

    Article  Google Scholar 

  25. Guru, A., Mohanta, B.K., Mohapatra, H., Al-Turjman, F., Altrjman, C., Yadav, A.: A survey on consensus protocols and attacks on blockchain technology. Appl. Sci. 13(4), 2604 (2023). https://doi.org/10.3390/app13042604

    Article  Google Scholar 

  26. Sayeed, S., Marco-Gisbert, H.: Assessing blockchain consensus and security mechanisms against the 51% attack. Appl. Sci. 9(9), 1788 (2019). https://doi.org/10.3390/app9091788

    Article  Google Scholar 

  27. Wani, S., Imthiyas, M., Almohamedh, H., Alhamed, K.M., Almotairi, S., Gulzar, Y.: Distributed denial of service (DDoS) mitigation using blockchain—a comprehensive insight. Symmetry 13(2), 227 (2021). https://doi.org/10.3390/sym13020227

    Article  Google Scholar 

  28. Mahjabin, T., **ao, Y., Sun, G., Jiang, W.: A survey of distributed denial-of-service attack, prevention, and mitigation techniques. Int. J. Distrib. Sens. Netw. 13(12), 1550147717741463 (2017). https://doi.org/10.1177/1550147717741463

    Article  Google Scholar 

  29. Lin, C., He, D., Huang, X., Choo, K.K.R., Vasilakos, A.V.: BSeIn: a blockchain-based secure mutual authentication with fine-grained access control system for industry 4.0. J. Netw. Comput. Appl. 116, 42–52 (2018). https://doi.org/10.1016/j.jnca.2018.05.005

    Article  Google Scholar 

  30. Wan, J., Li, J., Imran, M., Li, D.: A blockchain-based solution for enhancing security and privacy in smart factory. IEEE Trans. Industr. Inf. 15(6), 3652–3660 (2019). https://doi.org/10.1109/TII.2019.2894573

    Article  Google Scholar 

  31. Li, L., Liu, J., Cheng, L., Qiu, S., Wang, W., Zhang, X., Zhang, Z.: Creditcoin: a privacy-preserving blockchain-based incentive announcement network for communications of smart vehicles. IEEE Trans. Intell. Transp. Syst. 19(7), 2204–2220 (2018). https://doi.org/10.1109/TITS.2017.2777990

    Article  Google Scholar 

  32. Novo, O.: Blockchain meets IoT: an architecture for scalable access management in IoT. IEEE Internet Things J. 5(2), 1184–1195 (2018). https://doi.org/10.1109/JIOT.2018.2812239

    Article  Google Scholar 

  33. Wang, C., Tan, X., Yao, C., Gu, F., Shi, F., Cao, H.: Trusted blockchain-driven IoT security consensus mechanism. Sustainability 14(9), 5200 (2022). https://doi.org/10.3390/su14095200

    Article  Google Scholar 

  34. Xu, X., Zhang, X., Gao, H., Xue, Y., Qi, L., Dou, W.: BeCome: blockchain-enabled computation offloading for IoT in mobile edge computing. IEEE Trans. Industr. Inf. 16(6), 4187–4195 (2019). https://doi.org/10.1109/TII.2019.2936869

    Article  Google Scholar 

  35. Zhao, K., Tang, S., Zhao, B., Wu, Y.: Dynamic and privacy-preserving reputation management for blockchain-based mobile crowdsensing. IEEE Access 7, 74694–74710 (2019). https://doi.org/10.1109/ACCESS.2019.2920922

    Article  Google Scholar 

  36. Ziegeldorf, J.H., Matzutt, R., Henze, M., Grossmann, F., Wehrle, K.: Secure and anonymous decentralized Bitcoin mixing. Futur. Gener. Comput. Syst. 80, 448–466 (2018). https://doi.org/10.1016/j.future.2016.05.018

    Article  Google Scholar 

  37. Dwivedi, A.D., Srivastava, G., Dhar, S., Singh, R.: A decentralized privacy-preserving healthcare blockchain for IoT. Sensors 19(2), 326 (2019). https://doi.org/10.3390/s19020326

    Article  Google Scholar 

  38. Sun, S., Du, R., Chen, S., Li, W.: Blockchain-based IoT access control system: towards security, lightweight, and cross-domain. IEEE Access 9, 36868–36878 (2021). https://doi.org/10.1109/ACCESS.2021.3059863

    Article  Google Scholar 

  39. Zhonghua, C., Goyal, S.B., Rajawat, A.S.: Smart contracts attribute-based access control model for security and privacy of IoT system using blockchain and edge computing. J. Supercomput. (2023). https://doi.org/10.1007/s11227-023-05517-4

    Article  Google Scholar 

  40. De Ree, M., Mantas, G., Radwan, A., Mumtaz, S., Rodriguez, J., Otung, I.E.: Key management for beyond 5G mobile small cells: a survey. IEEE Access 7, 59200–59236 (2019). https://doi.org/10.1109/ACCESS.2019.2914359

    Article  Google Scholar 

  41. Chen, C.Y., Chao, H.C.: A survey of key distribution in wireless sensor networks. Security Commun. Netw. 7(12), 2495–2508 (2014). https://doi.org/10.1002/sec.354

    Article  Google Scholar 

  42. Gautam, A.K., Kumar, R.: A comprehensive study on key management, authentication and trust management techniques in wireless sensor networks. SN Appl. Sci. 3(1), 1–27 (2021). https://doi.org/10.1007/s42452-020-04089-9

    Article  MathSciNet  Google Scholar 

  43. Ma, M., Shi, G., Li, F.: Privacy-oriented blockchain-based distributed key management architecture for hierarchical access control in the IoT scenario. IEEE Access 7, 34045–34059 (2019). https://doi.org/10.1109/ACCESS.2019.2904042

    Article  Google Scholar 

  44. Bahrami, P.N., Javadi, H.H., Dargahi, T., Dehghantanha, A., Choo, K.K.R.: A hierarchical key pre-distribution scheme for fog networks. Concurr. Comput. Pract. Experience 31(22), e4776 (2019). https://doi.org/10.1002/cpe.4776

    Article  Google Scholar 

  45. Lei, A., Cruickshank, H., Cao, Y., Asuquo, P., Ogah, C.P.A., Sun, Z.: Blockchain-based dynamic key management for heterogeneous intelligent transportation systems. IEEE Internet Things J. 4(6), 1832–1843 (2017). https://doi.org/10.1109/JIOT.2017.2740569

    Article  Google Scholar 

  46. Tian, Y., Wang, Z., **ong, J., Ma, J.: A blockchain-based secure key management scheme with trustworthiness in DWSNs. IEEE Trans. Industr. Inf. 16(9), 6193–6202 (2020). https://doi.org/10.1109/TII.2020.2965975

    Article  Google Scholar 

  47. Ouaddah, A., Abou Elkalam, A., Ait Ouahman, A.: FairAccess: a new Blockchain-based access control framework for the Internet of Things. Security Commun. Netw. 9(18), 5943–5964 (2016). https://doi.org/10.1002/sec.1748

    Article  Google Scholar 

  48. Dukkipati, C., Zhang, Y., Cheng, L.C.: Decentralized, blockchain based access control framework for the heterogeneous internet of things. In: Proceedings of the 3rd ACM Workshop on Attribute-Based Access Control (2018). https://doi.org/10.1145/3180457.3180458

  49. Oktian, Y.E., Lee, S.G.: Borderchain: blockchain-based access control framework for the internet of things endpoint. IEEE Access 9, 3592–3615 (2020). https://doi.org/10.1109/ACCESS.2020.3047413

    Article  Google Scholar 

  50. Shah, Z., Ullah, I., Li, H., Levula, A., Khurshid, K.: blockchain based solutions to mitigate distributed denial of service (DDoS) attacks in the Internet of Things (IoT): a survey. Sensors 22(3), 1094 (2022). https://doi.org/10.3390/s22031094

    Article  Google Scholar 

  51. Rouhani, S., Belchior, R., Cruz, R.S., Deters, R.: Distributed attribute-based access control system using permissioned blockchain. World Wide Web 24(5), 1617–1644 (2021). https://doi.org/10.1007/s11280-021-00874-7

    Article  Google Scholar 

  52. Luo, H., Lin, Y., Zhang, H., Zukerman, M.: Preventing DDoS attacks by identifier/locator separation. IEEE Network 27(6), 60–65 (2013). https://doi.org/10.1109/MNET.2013.6678928

    Article  Google Scholar 

  53. Ghovanlooy Ghajar, F., Sikora, A., Welte, D.: Schloss: Blockchain-based system architecture for secure industrial IoT. Electronics 11(10), 1629 (2022). https://doi.org/10.3390/electronics11101629

    Article  Google Scholar 

  54. Tao, Q., Cui, X.: B-FLACS: blockchain-based flexible lightweight access control scheme for data sharing in cloud. Clust. Comput. (2022). https://doi.org/10.1007/s10586-022-03782-1

    Article  Google Scholar 

  55. Khalid, M., Hameed, S., Qadir, A., Shah, S.A., Draheim, D.: Towards SDN-based smart contract solution for IoT access control. Comput. Commun. 198, 1–31 (2022). https://doi.org/10.1016/j.comcom.2022.11.007

    Article  Google Scholar 

  56. Ismail, L., Materwala, H.: A review of blockchain architecture and consensus protocols: use cases, challenges, and solutions. Symmetry 11(10), 1198 (2019). https://doi.org/10.3390/sym11101198

    Article  Google Scholar 

  57. Torell, W., Avelar, V.: Mean time between failure: Explanation and standards. White Paper 78, 6–7 (2004)

    Google Scholar 

  58. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, pp. 41–47 (2002). https://doi.org/10.1145/586110.586117

  59. Modiri, V., Javadi, H.H.S., Anzani, M.: A novel scalable key pre-distribution scheme for wireless sensor networks based on residual design. Wirel. Pers. Commun. 96(2), 2821–2841 (2017). https://doi.org/10.1007/s11277-017-4326-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have made contributions in collecting data, analysis, writing, and other parts.

Corresponding author

Correspondence to Seyed Hossein Erfani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadian, M., Erfani, S.H., Deypir, M. et al. CD-TMS: a combinatorial design-based token management system to enhance security and performance in blockchain. Cluster Comput (2023). https://doi.org/10.1007/s10586-023-04184-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-023-04184-7

Keywords

Navigation