Log in

On-line modeling and monitoring for multi-operation batch processes with infinite data types

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

For complex industrial processes with frequent operating characteristics, process data types will be infinite due to the randomness and uncertainty of operation. Additionally, the process data follow serious non-Gaussian distribution. In this paper, an efficient q-nearest-neighbor standardization principal component analysis (q-NNS PCA) based on-line modeling method is proposed to handle complex data distributions and incursive frequent operation shifts. Due to the limitation of initial modeling data, the modeling data structure needs to be continuously replenished with accumulation of new normal batches. The on-line modeling method is proposed to avoid the complexity of model updating and establishment of massive offline models as well as the difficulty of the multiple models selection. For each test sample online, the q-NNS method can search its modeling data coming from the same operation to establish monitoring model, which settles non-Gaussian distribution problem. The proposed method is illustrated with a 120t ladle furnace (LF) steelmaking process. The comparison of monitoring results demonstrates that the proposed method is superior to multiple PCA and MKPCA methods and can achieve accurate and prompt detection of various types of faults in multi-operation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang, Y.J., Jia, M.X., Mao, Z.Z.: A fast monitoring method for multiple operating batch processes with incomplete modeling data types. J. Ind. Eng. Chem. 21, 328–337 (2015)

    Article  Google Scholar 

  2. Pourbabaee, B., Meskin, N., Khorasani, K.: Sensor fault detection, isolation, and identification using multiple-model-based hybrid kalman filter for gas turbine engines. IEEE Trans. Control Syst. Technol. 24(4), 1184–1200 (2016)

    Article  Google Scholar 

  3. Villez, K., Habermacher, J.: Shape anomaly detection for process monitoring of a sequencing batch reactor. Comput. Chem. Eng. 91, 365–379 (2016)

    Article  Google Scholar 

  4. Wang, Y.J., Sun, F.M.: Multiple dynamic kernel clustering based online monitoring for batch processes. CIESC J. 65(12), 4095 (2014)

    Google Scholar 

  5. Zhao, S.Y., Huang, B., Liu, F.: Detection and diagnosis of multiple faults with uncertain modeling parameters. IEEE Trans. Control Syst. Technol. 25(5), 1873–1881 (2017)

    Article  Google Scholar 

  6. Zhu, J., Ge, Z., Song, Z.: Non-Gaussian Industrial process monitoring with probabilistic Independent component analysis. IEEE Trans. Autom. Sci. Eng. 14(2), 1309–1319 (2017)

    Article  Google Scholar 

  7. Zhang, S.M., Zhao, C.H., Wang, S., Wang, F.L.: Pseudo time-slice construction using variable moving window-k nearest neighbor (VMW-kNN) rule for sequential uneven phase division and batch process monitoring. Ind. Eng. Chem. Res. 56(3), 728–740 (2017)

    Article  Google Scholar 

  8. Jong-Min, L., ChangKyoo, Y., In-Beum, L.: Fault detection of batch processes using multi-way kernel principal component analysis. Comput. Chem. Eng. 28, 1837–1847 (2004)

    Article  Google Scholar 

  9. Kim, M.H., Yoo, C.K.: Multivariate monitoring for time-derivative non-Gaussian batch process. Korean J. Chem. Eng. 25(5), 947–954 (2008)

    Article  Google Scholar 

  10. Choi, S.W., Lee, I.B.: Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chem. Eng. Sci. 59, 5897–5908 (2004)

    Article  Google Scholar 

  11. Yu, J., Qin, S.J.: Multiway gaussian mixture model based multiphase batch process monitoring. Ind. Eng. Chem. Res. 48, 8585–8594 (2009)

    Article  Google Scholar 

  12. Liu, J.L.: Modeling a large-scale nonlinear system using adaptive Takagi-Sugeno fuzzy model on PCA subspace. Ind. Eng. Chem. Res. 46, 788–800 (2007)

    Article  Google Scholar 

  13. Wang, X., Kruger, U., Irwin, G.W.: Process monitoring approach using fast moving window PCA. Ind. Eng. Chem. Res. 44, 5691–5702 (2005)

    Article  Google Scholar 

  14. Zhao, C.H., Wang, F.L., Gao, F.R., et al.: Adaptive monitoring method for batch processes based on phase dissimilarity updating with limited modeling data. Ind. Eng. Chem. Res. 46, 4943–4953 (2007)

    Article  Google Scholar 

  15. Petković, M., Rapaić, M.R., Jeličić, Z.D., et al.: On-line adaptive clustering for process monitoring and fault detection. Expert Syst. Appl. 39, 10226–10235 (2012)

    Article  Google Scholar 

  16. Tong, C.D., Palazoglu, A., Yan, X.F.: An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding. J. Process Control 23, 1497–1507 (2013)

    Article  Google Scholar 

  17. Ma, Y.X., Shi, H.B., Wang, M.L.: Adaptive local outlier probability for dynamic process monitoring. Chin. J. Chem. Eng. 22(7), 820–827 (2014)

    Article  Google Scholar 

  18. Zhang, X., Xu, Z.: Hesitant fuzzy agglomerative hierarchical clustering algorithms. Int. J. Syst. Sci. 46(3), 562–576 (2015)

    Article  Google Scholar 

  19. Almeida, J.A.S., Barbosa, L.M.S., Pais, A.A.C.C., et al.: Improving hierarchical cluster analysis: a new method with outlier detection and automatic clustering. Chemom. Intell. Lab. Syst. 87, 208–217 (2007)

    Article  Google Scholar 

  20. Kleiner, F.W.: Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs. J. Comput. Syst. Sci. 82(1), 23–44 (2016)

    Article  MathSciNet  Google Scholar 

  21. Lv, W., Mao, Z., Yuan, P.: Ladle furnace steel temperature prediction model based on partial linear regularization networks with sparse representation. Steel Res. Int. 83, 288–296 (2012)

    Article  Google Scholar 

  22. Zhou, P., Song, H.D., Wang, H., et al.: Data-driven nonlinear subspace modeling for prediction and control of molten iron quality indices in blast furnace ironmaking. IEEE Trans. Control Syst. Technol. 25(5), 1761–1774 (2017)

    Article  Google Scholar 

  23. Li, Y., Mao, Z., Wang, Y., et al.: Model predictive control synthesis approach of electrode regulator system for electric arc furnace. J. Iron. Steel Res. Int. 11, 20–25 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (Grant: 61503169, 61572244, 61603164), Liaoning province innovation talent project (LR2016057), the Natural Science Foundation of Liaoning province (Grant: 2015020102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Sun, F. & Li, D. On-line modeling and monitoring for multi-operation batch processes with infinite data types. Cluster Comput 22 (Suppl 6), 14855–14866 (2019). https://doi.org/10.1007/s10586-018-2426-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2426-2

Keywords

Navigation