Log in

PET/CT in assessment of colorectal liver metastases: a comprehensive review with emphasis on 18F-FDG

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Approximately 25% of those who are diagnosed with colorectal cancer will develop colorectal liver metastases (CRLM) as their illness advances. Despite major improvements in both diagnostic and treatment methods, the prognosis for patients with CRLM is still poor, with low survival rates. Accurate employment of imaging methods is critical in identifying the most effective treatment approach for CRLM. Different imaging modalities are used to evaluate CRLM, including positron emission tomography (PET)/computed tomography (CT). Among the PET radiotracers, fluoro-18-deoxyglucose (18F-FDG), a glucose analog, is commonly used as the primary radiotracer in assessment of CRLM. As the importance of 18F-FDG-PET/CT continues to grow in assessment of CRLM, develo** a comprehensive understanding of this subject becomes imperative for healthcare professionals from diverse disciplines. The primary aim of this article is to offer a simplified and comprehensive explanation of PET/CT in the evaluation of CRLM, with a deliberate effort to minimize the use of technical nuclear medicine terminology. This approach intends to provide various healthcare professionals and researchers with a thorough understanding of the subject matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Martin J et al (2020) Colorectal liver metastases: current management and future perspectives. World J Clin Oncol 11(10):761–808

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhou H et al (2022) Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduct Target Ther 7(1):70

    Article  PubMed  PubMed Central  Google Scholar 

  3. Akgül Ö et al (2014) Role of surgery in colorectal cancer liver metastases. World J Gastroenterol 20(20):6113

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zirakchian Zadeh M et al (2022) Real-time split-dose PET/CT-guided ablation improves colorectal liver metastasis detection and ablation zone margin assessments without the need for repeated contrast injection. Cancers (Basel) 14(24):6253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bandar A, Hussain M, Kim NK (2017) Current status and future perspectives on treatment of liver metastasis in colorectal cancer. Oncol Rep 37(5):2553–2564

    Article  PubMed  Google Scholar 

  6. Takahashi H, Berber E (2020) Role of thermal ablation in the management of colorectal liver metastasis. Hepatobiliary Surg Nutr 9(1):49

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schirrmeister H, Arslandemir C (2010) Chapter 24—diagnosis of skeletal metastases in malignant extraskeletal cancers. In: Heymann D (ed) Bone cancer. Academic Press, San Diego, pp 283–294

    Chapter  Google Scholar 

  8. Hofman MS, Hicks RJ (2016) How we read oncologic FDG PET/CT. Cancer Imaging 16(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cipe G et al (2013) Routine use of positron-emission tomography/computed tomography for staging of primary colorectal cancer: does it affect clinical management? World J Surg Oncol 11(1):1–8

    Article  Google Scholar 

  10. Deng J, Tang J, Shen N (2014) Meta-analysis of diagnosis of liver metastatic cancers: comparison of 18 FDG PET-CT and gadolinium-enhanced MRI. J Med Imaging Radiat Oncol 58(5):532–537

    Article  PubMed  Google Scholar 

  11. Rohren EM et al (2002) The role of F-18 FDG positron emission tomography in preoperative assessment of the liver in patients being considered for curative resection of hepatic metastases from colorectal cancer. Clin Nucl Med 27(8):550–555

    Article  PubMed  Google Scholar 

  12. Ruers T et al (2002) Value of positron emission tomography with [F-18] fluorodeoxyglucose in patients with colorectal liver metastases: a prospective study. J Clin Oncol 20(2):388–395

    Article  CAS  PubMed  Google Scholar 

  13. Sahani DV et al (2005) Detection of liver metastases from adenocarcinoma of the colon and pancreas: comparison of mangafodipir trisodium–enhanced liver MRI and whole-body FDG PET. Am J Roentgenol 185(1):239–246

    Article  Google Scholar 

  14. D’souza MM et al (2009) Prospective evaluation of CECT and 18F-FDG-PET/CT in detection of hepatic metastases. Nucl Med Commun 30(2):117–125

    Article  PubMed  Google Scholar 

  15. Tahtabasi M, Erturk SM, Basak M (2021) Comparison of MRI and 18F-FDG PET/CT in the liver metastases of gastrointestinal and pancreaticobiliary tumors. Sisli Etfal Hastan Tip Bul 55(1):12–17

    PubMed  PubMed Central  Google Scholar 

  16. Yang M et al (2003) Comparison of MR and PET imaging for the evaluation of liver metastases. J Magn Reson Imaging 17(3):343–349

    Article  PubMed  Google Scholar 

  17. Beiderwellen K et al (2015) Accuracy of [18F]FDG PET/MRI for the detection of liver metastases. PLoS ONE 10(9):e0137285

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sivesgaard K et al (2018) Diagnostic accuracy of CE-CT, MRI and FDG PET/CT for detecting colorectal cancer liver metastases in patients considered eligible for hepatic resection and/or local ablation. Eur Radiol 28(11):4735–4747

    Article  PubMed  Google Scholar 

  19. Tsili AC et al (2020) Imaging of colorectal cancer liver metastases using contrast-enhanced US, multidetector CT, MRI, and FDG PET/CT: a meta-analysis. Acta Radiol 62(3):302–312

    Article  PubMed  Google Scholar 

  20. Zirakchian Zadeh M et al (2020) Correlation of whole-bone marrow dual-time-point (18)F-FDG, as measured by a CT-based method of PET/CT quantification, with response to treatment in newly diagnosed multiple myeloma patients. Am J Nucl Med Mol Imaging 10(5):257–264

    PubMed  PubMed Central  Google Scholar 

  21. Dirisamer A et al (2008) Dual-time-point FDG-PET/CT for the detection of hepatic metastases. Mol Imaging Biol 10(6):335–340

    Article  PubMed  Google Scholar 

  22. de Geus-Oei LF et al (2006) FDG-PET in colorectal cancer. Cancer Imaging 6(Special Issue A):S71-81

    Article  PubMed  PubMed Central  Google Scholar 

  23. Staib L et al (2000) Is 18F-fluorodeoxyglucose positron emission tomography in recurrent colorectal cancer a contribution to surgical decision making? Am J Surg 180(1):1–5

    Article  CAS  PubMed  Google Scholar 

  24. Imdahl A et al (2000) Impact of 18 F-FDG-positron emission tomography for decision making in colorectal cancer recurrences. Langenbecks Arch Surg 385:129–134

    Article  CAS  PubMed  Google Scholar 

  25. Kalff V et al (2002) The clinical impact of 18F-FDG PET in patients with suspected or confirmed recurrence of colorectal cancer: a prospective study. J Nucl Med 43(4):492–499

    PubMed  Google Scholar 

  26. Huebner RH et al (2000) A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer. J Nucl Med 41(7):1177–1189

    CAS  PubMed  Google Scholar 

  27. Wiering B et al (2005) The impact of fluor-18-deoxyglucose-positron emission tomography in the management of colorectal liver metastases. Cancer 104(12):2658–2670

    Article  PubMed  Google Scholar 

  28. Zhou N et al (2021) The Value of (18)F-FDG PET/CT and abdominal PET/MRI as a one-stop protocol in patients with potentially resectable colorectal liver metastases. Front Oncol 11:714948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grassetto G et al (2010) Additional value of FDG-PET/CT in management of “solitary” liver metastases: preliminary results of a prospective multicenter study. Mol Imag Biol 12:139–144

    Article  Google Scholar 

  30. Zirakchian Zadeh M et al (2022) A review of different methods used for quantification and assessment of FDG-PET/CT in multiple myeloma. Nucl Med Commun 43(4):378–391

    Article  CAS  PubMed  Google Scholar 

  31. Im HJ et al (2018) Current methods to define metabolic tumor volume in positron emission tomography: which one is better? Nucl Med Mol Imaging 52(1):5–15

    Article  PubMed  Google Scholar 

  32. **a Q et al (2015) Prognostic significance of 18FDG PET/CT in colorectal cancer patients with liver metastases: a meta-analysis. Cancer Imaging 15(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  33. de Geus-Oei LF et al (2006) FDG-PET for prediction of survival of patients with metastatic colorectal carcinoma. Ann Oncol 17(11):1650–1655

    Article  PubMed  Google Scholar 

  34. Zwezerijnen GJC et al (2023) Reproducibility of [18F]FDG PET/CT liver SUV as reference or normalisation factor. Eur J Nucl Med Mol Imaging 50(2):486–493

    Article  CAS  PubMed  Google Scholar 

  35. Grut H et al (2022) Metabolic tumor volume predicts long-term survival after transplantation for unresectable colorectal liver metastases: 15 years of experience from the SECA study. Ann Nucl Med 36(12):1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zalom M et al (2012) FDG PET/CT as a prognostic test After 90Y radioembolization in patients with metastatic hepatic disease. Clin Nucl Med 37(9):862

    Article  PubMed  Google Scholar 

  37. Higashi K et al (2002) 18F-FDG uptake as a biologic prognostic factor for recurrence in patients with surgically resected non-small cell lung cancer. J Nucl Med 43(1):39–45

    PubMed  Google Scholar 

  38. Vansteenkiste JF et al (1999) Prognostic importance of the standardized uptake value on 18F-fluoro-2-deoxy-glucose–positron emission tomography scan in non–small-cell lung cancer: an analysis of 125 cases. J Clin Oncol 17(10):3201–3206

    Article  CAS  PubMed  Google Scholar 

  39. Bijlstra OD et al (2022) The value of (18)F-FDG-PET-CT imaging in treatment evaluation of colorectal liver metastases: a systematic review. Diagnostics (Basel) 12(3):715

    Article  CAS  PubMed  Google Scholar 

  40. Burger IA et al (2013) Correlation between therapy response assessment using FDG PET/CT and histopathologic tumor regression grade in hepatic metastasis of colorectal carcinoma after neoadjuvant therapy. Ann Nucl Med 27:177–183

    Article  CAS  PubMed  Google Scholar 

  41. Lubezky N et al (2007) The role and limitations of 18-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) scan and computerized tomography (CT) in restaging patients with hepatic colorectal metastases following neoadjuvant chemotherapy: comparison with operative and pathological findings. J Gastrointest Surg 11:472–478

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vicente AMG et al (2013) Response assessment of colorectal liver metastases with contrast enhanced CT/18F-FDG PET. Eur J Radiol 82(6):e255–e261

    Article  Google Scholar 

  43. Tan MC et al (2007) Chemotherapy-induced normalization of FDG uptake by colorectal liver metastases does not usually indicate complete pathologic response. J Gastrointest Surg 11:1112–1119

    Article  PubMed  Google Scholar 

  44. Bacigalupo L et al (2010) Assessment of liver metastases from colorectal adenocarcinoma following chemotherapy: SPIO-MRI versus FDG-PET/CT. Radiol Med (Torino) 115(7):1087–1100

    Article  CAS  PubMed  Google Scholar 

  45. Lastoria S et al (2013) Early PET/CT scan is more effective than RECIST in predicting outcome of patients with liver metastases from colorectal cancer treated with preoperative chemotherapy plus bevacizumab. J Nucl Med 54(12):2062–2069

    Article  CAS  PubMed  Google Scholar 

  46. De Bruyne S et al (2012) Value of DCE-MRI and FDG-PET/CT in the prediction of response to preoperative chemotherapy with bevacizumab for colorectal liver metastases. Br J Cancer 106(12):1926–1933

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mertens J et al (2013) Standardized added metabolic activity (SAM) IN 18F-FDG PET assessment of treatment response in colorectal liver metastases. Eur J Nucl Med Mol Imaging 40(8):1214–1222

    Article  CAS  PubMed  Google Scholar 

  48. Nishioka Y et al (2018) Fluorine-18-fluorodeoxyglucose positron emission tomography as an objective substitute for CT morphologic response criteria in patients undergoing chemotherapy for colorectal liver metastases. Abdom Radiol 43(5):1152–1158

    Article  Google Scholar 

  49. Skougaard K et al (2014) CT versus FDG-PET/CT response evaluation in patients with metastatic colorectal cancer treated with irinotecan and cetuximab. Cancer Med 3(5):1294–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Heijmen L et al (2015) Multimodality imaging to predict response to systemic treatment in patients with advanced colorectal cancer. PLoS ONE 10(4):e0120823

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chiu KWH et al (2018) Long-term outcomes and recurrence pattern of 18F-FDG PET-CT complete metabolic response in the first-line treatment of metastatic colorectal cancer: a lesion-based and patient-based analysis. BMC Cancer 18(1):776

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kim DH et al (2012) Intermodality comparison between 3D perfusion CT and 18F-FDG PET/CT imaging for predicting early tumor response in patients with liver metastasis after chemotherapy: preliminary results of a prospective study. Eur J Radiol 81(11):3542–3550

    Article  PubMed  Google Scholar 

  53. Nemeth Z et al (2020) Metabolic parameters as predictors for progression free and overall survival of patients with metastatic colorectal cancer. Pathol Oncol Res 26(4):2683–2691

    Article  PubMed  Google Scholar 

  54. Correa-Gallego C et al (2015) Prospective evaluation of 18F-fluorodeoxyglucose positron emission tomography in patients receiving hepatic arterial and systemic chemotherapy for unresectable colorectal liver metastases. HPB (Oxford) 17(7):644–650

    Article  PubMed  Google Scholar 

  55. Sacks A et al (2011) Value of PET/CT in the management of liver metastases, part 1. Am J Roentgenol 197(2):W256–W259

    Article  Google Scholar 

  56. Fernandez FG et al (2004) Five-year survival after resection of hepatic metastases from colorectal cancer in patients screened by positron emission tomography with F-18 fluorodeoxyglucose (FDG-PET). Ann Surg 240(3):438

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ruers TJ et al (2009) Improved selection of patients for hepatic surgery of colorectal liver metastases with 18F-FDG PET: a randomized study. J Nucl Med 50(7):1036–1041

    Article  PubMed  Google Scholar 

  58. Oh JW et al (2016) Does the gadoxetic acid-enhanced liver MRI Impact on the treatment of patients with colorectal cancer? Comparison study with 18F-FDG PET/CT. Biomed Res Int 2016:8412071

    Article  PubMed  PubMed Central  Google Scholar 

  59. Van Cutsem E et al (2016) Imaging in colorectal cancer: progress and challenges for the clinicians. Cancers 8(9):81

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lin Y-M et al (2021) Image-guided ablation for colorectal liver metastasis: principles, current evidence, and the path forward. Cancers 13(16):3926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Viganò L et al (2017) Positron emission tomography-computed tomography for patients with recurrent colorectal liver metastases: impact on restaging and treatment planning. Ann Surg Oncol 24:1029–1036

    Article  PubMed  Google Scholar 

  62. Petre EN, Sofocleous C (2017) Thermal ablation in the management of colorectal cancer patients with oligometastatic liver disease. Visc Med 33(1):62–68

    Article  PubMed  PubMed Central  Google Scholar 

  63. Solbiati L et al (2012) Small liver colorectal metastases treated with percutaneous radiofrequency ablation: local response rate and long-term survival with up to 10-year follow-up. Radiology 265(3):958–968

    Article  PubMed  Google Scholar 

  64. Shady W et al (2016) Percutaneous radiofrequency ablation of colorectal cancer liver metastases: factors affecting outcomes—a 10-year experience at a single center. Radiology 278(2):601–611

    Article  PubMed  Google Scholar 

  65. Veit P et al (2006) Detection of residual tumor after radiofrequency ablation of liver metastasis with dual-modality PET/CT: initial results. Eur Radiol 16:80–87

    Article  PubMed  Google Scholar 

  66. Sahin DA et al (2012) The utility of PET/CT in the management of patients with colorectal liver metastases undergoing laparascopic radiofrequency thermal ablation. Ann Surg Oncol 19:850–855

    Article  PubMed  Google Scholar 

  67. Cornelis F et al (2016) 18F-FDG PET/CT is an immediate imaging biomarker of treatment success after liver metastasis ablation. J Nucl Med 57(7):1052–1057

    Article  CAS  PubMed  Google Scholar 

  68. Nielsen K et al (2013) PET-CT after radiofrequency ablation of colorectal liver metastases: suggestions for timing and image interpretation. Eur J Radiol 82(12):2169–2175

    Article  PubMed  Google Scholar 

  69. Kuehl H et al (2008) Comparison of FDG-PET, PET/CT and MRI for follow-up of colorectal liver metastases treated with radiofrequency ablation: initial results. Eur J Radiol 67(2):362–371

    Article  PubMed  Google Scholar 

  70. Liu Z-y et al (2010) Early PET/CT after radiofrequency ablation in colorectal cancer liver metastases: is it useful? Chin Med J 123(13):1690–1694

    PubMed  Google Scholar 

  71. Zirakchian Zadeh M et al (2023) Gradient-based volumetric PET parameters on immediate pre-ablation FDG-PET predict local tumor progression in patients with colorectal liver metastasis treated by microwave ablation. CardioVasc Int Radiol. https://doi.org/10.1007/s00270-023-03470-6

    Article  Google Scholar 

  72. Cornelis FH et al (2018) Immediate postablation 18F-FDG injection and corresponding SUV are surrogate biomarkers of local tumor progression after thermal ablation of colorectal carcinoma liver metastases. J Nucl Med 59(9):1360–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Seraj SM et al (2019) Pretreatment volumetric parameters of FDG-PET predict the survival after Yttrium-90 radio-embolization in metastatic liver disease. Am J Nucl Med Mol Imaging 9(5):248–254

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shady W et al (2016) Metabolic tumor volume and total lesion glycolysis on FDG-PET/CT can predict overall survival after 90Y radioembolization of colorectal liver metastases: a comparison with SUVmax, SUVpeak, and RECIST 1.0. Eur J Radiol 85(6):1224–1231

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fendler WP et al (2013) Validation of several SUV-based parameters derived from 18F-FDG PET for prediction of survival after SIRT of hepatic metastases from colorectal cancer. J Nucl Med 54(8):1202–1208

    Article  CAS  PubMed  Google Scholar 

  76. Soydal C et al (2013) The prognostic value of quantitative parameters of 18F-FDG PET/CT in the evaluation of response to internal radiation therapy with yttrium-90 in patients with liver metastases of colorectal cancer. Nucl Med Commun 34(5):501–506

    Article  CAS  PubMed  Google Scholar 

  77. Zerizer I et al (2012) The role of early 18 F-FDG PET/CT in prediction of progression-free survival after 90 Y radioembolization: comparison with RECIST and tumour density criteria. Eur J Nucl Med Mol Imaging 39:1391–1399

    Article  CAS  PubMed  Google Scholar 

  78. Shady W et al (2016) Surrogate imaging biomarkers of response of colorectal liver metastases after salvage radioembolization using 90Y-loaded resin microspheres. AJR Am J Roentgenolo 207(3):661

    Article  Google Scholar 

  79. Sabet A et al (2015) Early post-treatment FDG PET predicts survival after 90 Y microsphere radioembolization in liver-dominant metastatic colorectal cancer. Eur J Nucl Med Mol Imaging 42:370–376

    Article  CAS  PubMed  Google Scholar 

  80. Jongen JM et al (2018) Anatomic versus metabolic tumor response assessment after radioembolization treatment. J Vasc Interventional Radiol 29(2):244–532

    Article  Google Scholar 

  81. Sager S et al (2019) Comparison of PERCIST and RECIST criteria for evaluation of therapy response after yttrium-90 microsphere therapy in patients with hepatocellular carcinoma and those with metastatic colorectal carcinoma. Nucl Med Commun 40(5):461–468

    Article  CAS  PubMed  Google Scholar 

  82. Naydenov N et al (2023) 90Y activity quantification in PET/CT-guided biopsy specimens from colorectal hepatic metastases immediately after trans-arterial radioembolization using micro-CT and autoradiography. J Vasc Interventional Radiol. https://doi.org/10.1016/j.jvir.2023.05.022

    Article  Google Scholar 

  83. Liu F-Y et al (2005) Utility of 2-fluoro-2-deoxy-D-glucose positron emission tomography in managing patients of colorectal cancer with unexplained carcinoembryonic antigen elevation at different levels. Dis Colon Rectum 48:1900–1912

    Article  PubMed  Google Scholar 

  84. Tutt A et al (2004) The role of positron emission tomography in the management of colorectal cancer. Colorectal Dis 6(1):2–9

    Article  CAS  PubMed  Google Scholar 

  85. Bast RC Jr et al (2001) 2000 update of recommendations for the use of tumor markers in breast and colorectal cancer: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol 19(6):1865–1878

    Article  PubMed  Google Scholar 

  86. Pfister DG, Benson AB III, Somerfield MR (2004) Surveillance strategies after curative treatment of colorectal cancer. New Engl J Med 350(23):2375–2382

    Article  CAS  PubMed  Google Scholar 

  87. Rosen M et al (1998) Follow-up of colorectal cancer: a meta-analysis. Dis Colon Rectum 41:1116–1126

    Article  CAS  PubMed  Google Scholar 

  88. Renehan AG et al (2002) Impact on survival of intensive follow up after curative resection for colorectal cancer: systematic review and meta-analysis of randomised trials. BMJ 324(7341):813

    Article  PubMed  PubMed Central  Google Scholar 

  89. Flamen P et al (1999) Additional value of whole-body positron emission tomography with fluorine-18–2-fluoro-2-deoxy-D-glucose in recurrent colorectal cancer. J Clin Oncol 17(3):894

    Article  CAS  PubMed  Google Scholar 

  90. Flanagan FL et al (1998) Utility of FDG-PET for investigating unexplained plasma CEA elevation in patients with colorectal cancer. Ann Surg 227(3):319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Maldonado A et al (2000) 16. FDG-PET in the detection of recurrence in colorectal cancer based on rising CEA level. Experience in 72 Patients. Clin Positron Imaging 3(4):170

    Article  CAS  PubMed  Google Scholar 

  92. Flamen P et al (2001) Unexplained rising carcinoembryonic antigen (CEA) in the postoperative surveillance of colorectal cancer: the utility of positron emission tomography (PET). Eur J Cancer 37(7):862–869

    Article  CAS  PubMed  Google Scholar 

  93. Libutti SK et al (2001) A prospective study of 2-[18 F] fluoro-2-deoxy-D-glucose/positron emission tomography scan, 99m Tc-labeled arcitumomab (CEA-scan), and blind second-look laparotomy for detecting colon cancer recurrence in patients with increasing carcinoembryonic antigen levels. Ann Surg Oncol 8:779–786

    Article  CAS  PubMed  Google Scholar 

  94. Liu F-Y et al (2005) Utility of 2-Fluoro-2-Deoxy-D-Glucose positron emission tomography in managing patients of colorectal cancer with unexplained carcinoembryonic antigen elevation at different levels. Dis Colon Rectum 48(10):1900–1912

    Article  PubMed  Google Scholar 

  95. Libutti SK et al (2001) A prospective study of 2-[18F] Fluoro-2-Deoxy-D-Glucose/Positron emission tomography scan, 99mTc-Labeled Arcitumomab (CEA-Scan), and blind second-look laparotomy for detecting colon cancer recurrence in patients with increasing carcinoembryonic antigen levels. Ann Surg Oncol 8(10):779–786

    Article  CAS  PubMed  Google Scholar 

  96. SimÓ M et al (2002) FDG-PET improves the management of patients with suspected recurrence of colorectal cancer. Nucl Med Commun 23(10):975

    Article  PubMed  Google Scholar 

  97. Shady W et al (2017) Kras mutation is a marker of worse oncologic outcomes after percutaneous radiofrequency ablation of colorectal liver metastases. Oncotarget 8(39):66117–66127

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kirov A et al (2019) KRAS missense mutation effects on the 18F-FDG uptake of colorectal adenocarcinoma metastases in the liver. J Nucl Med 60(supplement 1):213

    Google Scholar 

  99. Kawada K et al (2015) Relationship between 18F-FDG PET/CT scans and KRAS mutations in metastatic colorectal cancer. J Nucl Med 56(9):1322–1327

    Article  CAS  PubMed  Google Scholar 

  100. Kung BT et al (2019) An update on the role of (18)F-FDG-PET/CT in major infectious and inflammatory diseases. Am J Nucl Med Mol Imaging 9(6):255–273

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Siveke JT (2018) Fibroblast-activating protein: targeting the roots of the tumor microenvironment. J Nucl Med 59(9):1412–1414

    Article  CAS  PubMed  Google Scholar 

  102. Pang Y et al (2021) Comparison of (68)Ga-FAPI and (18)F-FDG uptake in gastric, duodenal, and colorectal cancers. Radiology 298(2):393–402

    Article  PubMed  Google Scholar 

  103. Şahin E et al (2021) Comparison of (68)Ga-DOTA-FAPI and (18)FDG PET/CT imaging modalities in the detection of liver metastases in patients with gastrointestinal system cancer. Eur J Radiol 142:109867

    Article  PubMed  Google Scholar 

  104. Cuda TJ et al (2020) PET Imaging quantifying (68)Ga-PSMA-11 uptake in metastatic colorectal cancer. J Nucl Med 61(11):1576–1579

    Article  CAS  PubMed  Google Scholar 

  105. Hong YS et al (2013) 3′-Deoxy-3′-18F-fluorothymidine PET for the early prediction of response to leucovorin, 5-fluorouracil, and oxaliplatin therapy in patients with metastatic colorectal cancer. J Nucl Med 54(8):1209–1216

    Article  CAS  PubMed  Google Scholar 

  106. Mogensen MB et al (2017) FLT-PET for early response evaluation of colorectal cancer patients with liver metastases: a prospective study. EJNMMI Res 7(1):56

    Article  PubMed  PubMed Central  Google Scholar 

  107. Anan N, Zainon R, Tamal M (2022) A review on advances in (18)F-FDG PET/CT radiomics standardisation and application in lung disease management. Insights Imaging 13(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  108. van Helden EJ et al (2018) Radiomics analysis of pre-treatment [18F]FDG PET/CT for patients with metastatic colorectal cancer undergoing palliative systemic treatment. Eur J Nucl Med Mol Imaging 45(13):2307–2317

    Article  PubMed  PubMed Central  Google Scholar 

  109. Rahmim A et al (2019) Prognostic modeling for patients with colorectal liver metastases incorporating FDG PET radiomic features. Eur J Radiol 113:101–109

    Article  PubMed  PubMed Central  Google Scholar 

  110. Surasi DS et al (2014) 18F-FDG PET and PET/CT patient preparation: a review of the literature. J Nucl Med Technol 42(1):5–13

    Article  PubMed  Google Scholar 

  111. Borello A et al (2021) Diagnostic performance of the FDG-PET/CT in patients with resected mucinous colorectal liver metastases. Surgeon 19(5):e140–e145

    Article  PubMed  Google Scholar 

Download references

Funding

There was no funding for this review article.

Author information

Authors and Affiliations

Authors

Contributions

MZZ wrote the main manuscript text and prepared the figures.

Corresponding author

Correspondence to Mahdi Zirakchian Zadeh.

Ethics declarations

Conflict of interest

MZZ declares that he has no conflict of interest for this publication.

Informed consent

N/A to this review article. Large Language Model (ChatGPT) used solely for enhancing the language accuracy of the manuscript, not for the design or creating of ideas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zirakchian Zadeh, M. PET/CT in assessment of colorectal liver metastases: a comprehensive review with emphasis on 18F-FDG. Clin Exp Metastasis 40, 465–491 (2023). https://doi.org/10.1007/s10585-023-10231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-023-10231-9

Keywords

Navigation