Log in

Optimum synthesis of an amino functionalized microcrystalline cellulose from corn stalk for removal of aqueous Cu2+

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

An amino functionalized microcrystalline cellulose from corn stalk was prepared and its synthesis and operation conditions were optimized to remove Cu2+ from wastewater. To prepare this adsorbent, cellulose was grafted by glycidyl methacrylate in the presence of OP-10 as emulsifiers and potassium persulfate as initiators, then the grafted cellulose was aminated by diethylenetriamine. Batch experiments were performed to evaluate its adsorption capacity for Cu2+. Its adsorption process for Cu2+ was spontaneous and well fitted with pseudo-second-order kinetics and Langmuir isotherm. The maximum adsorption capacity of this modified cellulose for Cu2+ was demonstrated to be 343 mg/g at 45 °C and pH 4.5. The adsorbent showed a promising future due to its high performance in the removal of toxic Cu2+ and reusability. From the characterization results of scanning electron microscope, X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, the adsorbent structure and adsorption mechanism could be inferred. The adsorption mechanism revealed that the primary and secondary amines were the main functional groups to adsorb Cu2+. The study results could provide a new route for the utilization of waste corn stalk to control water pollution caused by toxic metal ions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdelwahab NA, Ammar NS, Ibrahim HS (2015) Graft copolymerization of cellulose acetate for removal and recovery of lead ions from wastewater. Int J Biol Macromol 79:913–922

    Article  CAS  Google Scholar 

  • Ahamad T, Naushad M, Inamuddin (2015) Heavy metal ion-exchange kinetic studies over cellulose acetate Zr(IV) molybdophosphate composite cation-exchanger. Desalin Water Treat 53(6):1675–1682

    Article  CAS  Google Scholar 

  • Anirudhan TS, Senan P (2011) Adsorption characteristics of cytochrome c onto cationic langmuir monolayers of sulfonated poly(glycidylmethacrylate)-grafted cellulose: mass transfer analysis, isotherm modeling and thermodynamics. Chem Eng J 168(2):678–690

    Article  CAS  Google Scholar 

  • Anirudhan TS, Senan P, Suchithra PS (2011) Evaluation of iron(III)-coordinated amino-functionalized poly(glycidyl methacrylate)-grafted cellulose for arsenic(v) adsorption from aqueous solutions. Water Air Soil Pollut 220(1–4):101–116

    Article  CAS  Google Scholar 

  • Anirudhan TS, Nima J, Divya PL (2013) Adsorption of chromium(VI) from aqueous solutions by glycidylmethacrylate-grafted-densified cellulose with quaternary ammonium groups. Appl Surf Sci 279(279):441–449

    Article  CAS  Google Scholar 

  • Bai L, Hu H, Fu W, Wan J, Cheng X, Zhuge L et al (2011) Synthesis of a novel silica-supported dithiocarbamate adsorbent and its properties for the removal of heavy metal ions. J Hazard Mater 195(1):261–275

    Article  CAS  Google Scholar 

  • Barsbay M, Kavakh PA, Tilki S, Kavaklı C, Güven O (2018) Porous cellulosic adsorbent for the removal of Cd(II), Pb(II) and Cu(II) ions from aqueous media. Radiat Phys Chem 142(2018):70–76

    Article  CAS  Google Scholar 

  • Biniak S, Pakula M, Szymanski GS, Swiatkowski A (1999) Effect of activated carbon surface oxygen- and/or nitrogen-containing groups on adsorption of copper(II) ions from aqueous solution. Langmuir 15(18):6117–6122

    Article  CAS  Google Scholar 

  • Chen S, Yue Q, Gao B, Li Q, Xu X (2011) Removal of Cr(VI) from aqueous solution using modified corn stalks: characteristic, equilibrium, kinetic and thermodynamic study. Chem Eng J 168(2):909–917

    Article  CAS  Google Scholar 

  • Chitpong N, Husson SM (2017) Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters. J Membr Sci 523:418–429

    Article  CAS  Google Scholar 

  • Donia AM, Atia AA, Alamrani WA, Elnahas AM (2009) Effect of structural properties of acid dyes on their adsorption behaviour from aqueous solutions by amine modified silica. J Hazard Mater 161(2–3):1544–1550

    Article  CAS  Google Scholar 

  • Duru İ, Ege D, Kamali AR (2016) Graphene oxides for removal of heavy and precious metals from wastewater. J Mater Sci 51(13):6097–6116

    Article  CAS  Google Scholar 

  • El-Khouly AS, Takahashi Y, Saafan AA, Kenawy E, Hafiz YA (2011) Study of heavy metal ion absorbance by amidoxime group introduced to cellulose-graft-polyacrylonitrile. J Appl Polym Sci 120(2):866–873

    Article  CAS  Google Scholar 

  • Gao X, Zhang H, Chen K, Zhou J, Liu Q (2018) Removal of heavy metal and sulfate ions by cellulose derivative-based biosorbents. Cellulose 25(4):2531–2545

    Article  CAS  Google Scholar 

  • Gossuin Y, Vuong QL (2018) NMR relaxometry for adsorption studies: proof of concept with copper adsorption on activated alumina. Sep Purif Technol 202:138–143

    Article  CAS  Google Scholar 

  • Güçlü G, Gürdag G, Özgümüs S (2003) Competitive removal of heavy metal ions by cellulose graft copolymers. J Appl Polym Sci 90(8):2034–2039

    Article  Google Scholar 

  • Gurung M, Adhikari BB, Gao X, Alam S, Inoue K (2014) Sustainability in the metallurgical industry: chemically modified cellulose for selective biosorption of gold from mixtures of base metals in chloride media. Ind Eng Chem Res 53(20):8565–8576

    Article  CAS  Google Scholar 

  • Hajeeth T, Vijayalakshmi K, Gomathi T, Sudha PN (2013) Removal of Cu(II) and Ni(II) using cellulose extracted from sisal fiber and cellulose-g-acrylic acid copolymer. Int J Biol Macromol 62(11):59–65

    Article  CAS  Google Scholar 

  • Hajeeth T, Sudha PN, Vijayalakshmi K, Gomathi T (2014) Sorption studies on Cr(VI) removal from aqueous solution using cellulose grafted with acrylonitrile monomer. Int J Biol Macromol 66(5):295–301

    Article  CAS  Google Scholar 

  • He Z, Wang Y, Zhao T, Ye Z, Huang H (2014) Ultrasonication-assisted rapid determination of epoxide values in polymer mixtures containing epoxy resin. Anal Methods 6(12):4257–4261

    Article  CAS  Google Scholar 

  • Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173

    Article  CAS  Google Scholar 

  • Hossain MA, Ngo HH, Guo WS, Nghiem LD, Hai FI, Vigneswaran S et al (2014) Competitive adsorption of metals on cabbage waste from multi-metal solutions. Biores Technol 160(6):79–88

    Article  CAS  Google Scholar 

  • Jia Q, Li D, Gao X, Yan J, Ma Q, Meng F (2016) Hydrazinolyzed cellulose-g-polymethyl acrylate as adsorbent for efficient removal of Cu(II) and Ni(II) ions from aqueous solution. J Chem Technol Biotechnol 91(5):1378–1386

    Article  CAS  Google Scholar 

  • Jiao C, Zhang Z, Tao J, Zhang D, Chen Y, Lin H (2017) Synthesis of a poly(amidoxime-hydroxamic acid) cellulose derivative and its application in heavy metal ion removal. RSC Adv 7(44):27787–27795

    Article  CAS  Google Scholar 

  • Kannamba B, Reddy KL, Apparao BV (2010) Removal of Cu(II) from aqueous solutions using chemically modified chitosan. J Hazard Mater 175(1–3):939

    Article  CAS  Google Scholar 

  • Kesenci K, Say R, Denizli A (2002) Removal of heavy metal ions from water by using poly(ethyleneglycol dimethacrylate-co-acrylamide) beads. Eur Polym J 38(7):1443–1448

    Article  CAS  Google Scholar 

  • Kettum W, Tran TTV, Kongparakul S, Reubroycharoen P, Guan G, Chanlek N et al (2018) Heavy metal sequestration with a boronic acid-functionalized carbon-based adsorbent. J Environ Chem Eng 6:1147–1154

    Article  CAS  Google Scholar 

  • Li Y, Xu Z, Liu S, Zhang J, Yang X (2017) Molecular simulation of reverse osmosis for heavy metal ions using functionalized nanoporous graphenes. Comput Mater Sci 139:65–74

    Article  CAS  Google Scholar 

  • Liu C, Bai R, San LQ (2008) Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: behaviors and mechanisms. Water Res 42(6):1511–1522

    Article  CAS  Google Scholar 

  • Liu L, **e JP, Li YJ, Zhang Q, Yao JM (2016) Three-dimensional macroporous cellulose-based bioadsorbents for efficient removal of nickel ions from aqueous solution. Cellulose 23(1):723–736

    Article  CAS  Google Scholar 

  • Liu X, Liu Y, Lu S, Guo W, ** B (2018) Performance and mechanism into TiO2/zeolite composites for sulfadiazine adsorption and photodegradation. Chem Eng J 350:131–147

    Article  CAS  Google Scholar 

  • Mohamed MF, Essawy HA, Ammar NS, Ibrahim HS (2017) Potassium fulvate-modified graft copolymer of acrylic acid onto cellulose as efficient chelating polymeric sorbent. Int J Biol Macromol 94:771–780

    Article  CAS  Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2006a) A modified cellulose adsorbent for the removal of nickel(II) from aqueous solutions. J Chem Technol Biotechnol 81(11):1820–1828

    Article  Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2006b) Removal of lead(II) ions from aqueous solutions using a modified cellulose adsorbent. Adsorpt Sci Technol 24(4):337–348

    Article  Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99(15):6709–6724

    Article  Google Scholar 

  • Orozco-Guareño E, Santiago-Gutiérrez F, Morán-Quiroz JL, Hernandez-Olmos SL, Soto V, Cruz WDL et al (2010) Removal of Cu(II) ions from aqueous streams using poly(acrylic acid-co-acrylamide) hydrogels. J Colloid Interface Sci 349(2):583–593

    Article  Google Scholar 

  • Saad M, Gaiani C, Mullet M, Scher J, Cuq B (2017) X-ray photoelectron spectroscopy for wheat powders: measurement of surface chemical composition. J Agric Food Chem 59(5):1527–1540

    Article  Google Scholar 

  • Saber-Samandari S, Gazi M (2013) Cellulose-graft-polyacrylamide/hydroxyapatite composite hydrogel with possible application in removal of Cu(II) ions. React Funct Polym 73(11):1523–1530

    Article  CAS  Google Scholar 

  • Samrani AE, Lartiges BS, Villiéras F (2008) Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization. Water Res 42(4–5):951–960

    Article  Google Scholar 

  • Shibi IG, Anirudhan TS (2006) Polymer-grafted banana (musa paradisiaca) stalk as an adsorbent for the removal of lead(II) and cadmium(II) ions from aqueous solutions: kinetic and equilibrium studies. J Chem Technol Biotechnol 81(3):433–444

    Article  CAS  Google Scholar 

  • Singha AS, Guleria A (2014) Chemical modification of cellulosic biopolymer and its use in removal of heavy metal ions from wastewater. Int J Biol Macromol 67(3):409–417

    Article  CAS  Google Scholar 

  • Tauler R, Casassas E, Rode BM (1986) The complex formation of Cu (II) with mono-and di-ethanolamine in aqueous solution. Inorg Chim Acta 114(2):203–209

    Article  CAS  Google Scholar 

  • Uva M, Tambasco M, Grassi G, Corsi I, Protano G, Atrei A (2017) Carboxymethylcellulose hydrogels cross-linked with magnetite nanoparticles for the removal of organic and inorganic pollutants from water. J Environ Chem Eng 5(4):3632–3639

    Article  CAS  Google Scholar 

  • Visa M, Chelaru AM (2014) Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment. Appl Surf Sci 303(2):14–22

    Article  CAS  Google Scholar 

  • Wang F, Pan Y, Cai P et al (2017) Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent. Biores Technol 241:482–490

    Article  CAS  Google Scholar 

  • Wen SSY, Rahman ML, Arshad SE, Surugau NL, Musta B (2012) Synthesis and characterization of poly(hydroxamic acid)–poly(amidoxime) chelating ligands from polymer-grafted acacia cellulose. J Appl Polym Sci 124(6):4443–4451

    CAS  Google Scholar 

  • Wu S, Xu Y, Sun J, Cao Z, Zhou J, Pan Y et al (2015) Inhibiting evaporation of heavy metal by controlling its chemical speciation in MSWI fly ash. Fuel 158:764–769

    Article  CAS  Google Scholar 

  • Xu Y (2017) Remediation of heavy metal-polluted agricultural soils using clay minerals: a review. Pedosphere 27(2):193–204

    Article  Google Scholar 

  • Xu J, Cao Z, Zhang Y, Yuan Z, Lou Z, Xu X et al (2018) A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere 195:351–364

    Article  CAS  Google Scholar 

  • Youn SJ, Pyo M (2008) Removal of heavy metal ions by electrocoagulation for continuous use of Fe2+/Fe3+-mediated electrochemical oxidation solutions. Bull Korean Chem Soc 29(5):974–978

    Article  Google Scholar 

  • Zheng L, Dang Z, Yi X, Zhang H (2010) Equilibrium and kinetic studies of adsorption of Cd(II) from aqueous solution using modified corn stalk. J Hazard Mater 176(1–3):650–656

    Article  CAS  Google Scholar 

  • Zheng L, Zhu C, Dang Z, Zhang H, Yi X, Liu C (2012) Preparation of cellulose derived from corn stalk and its application for cadmium ion adsorption from aqueous solution. Carbohyd Polym 90(2):1008–1015

    Article  CAS  Google Scholar 

  • Zhu HX, Cao XJ, He YC, Kong QP, He H, Wang J (2015) Removal of Cu2+ from aqueous solutions by the novel modified bagasse pulp cellulose: kinetics, isotherm and mechanism. Carbohyd Polym 129:115–126

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by National Natural Science Foundations of China (Nos. 21666021 and 21706112), National Natural Science Foundation of Jiangxi Province (No. 20161BAB203076) and Construction foundation for high level of chemical engineering and technology discipline (No. 100356).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Jiang, Y., Li, Y. et al. Optimum synthesis of an amino functionalized microcrystalline cellulose from corn stalk for removal of aqueous Cu2+. Cellulose 26, 805–821 (2019). https://doi.org/10.1007/s10570-018-2113-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-2113-8

Keywords

Navigation