Log in

Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanofibres (CNF) with diameter 10–60 nm were isolated from raw banana fibres by steam explosion process. These CNF were used as reinforcing elements in natural rubber (NR) latex along with cross linking agents to prepare nanocomposite films. The effect of CNF loading on the mechanical and dynamic mechanical (DMA) properties of NR/CNF nanocomposite was studied. The morphological, crystallographic and spectroscopic changes were also analyzed. Significant improvement of Young’s modulus and tensile strength was observed as a result of addition of CNF to the rubber matrix especially at higher CNF loading. DMA showed a change in the storage modulus of the rubber matrix upon addition of CNF which proves the reinforcing effect of CNF in the NR latex. A mechanism is suggested for the introduction of the Zn–cellulose complex and its three dimensional network as a result of the reaction between the cellulose and the Zinc metal which is originated during the composite formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86(4):1468–1475

    Article  CAS  Google Scholar 

  • Abraham E, Elbi PA, Deepa B, Jyotishkumar P, Pothen LA, Narine SS, Thomas S (2012) X-ray diffraction and biodegradation analysis of green composites of natural rubber/nanocellulose. Polym Degrad Stab 97(11):2378–2387

    Article  CAS  Google Scholar 

  • Angellier H, Molina-Boisseau S, Dufresne A (2005) Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber. Macromolecules 38:9161–9170

    Article  CAS  Google Scholar 

  • Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33(22):8344–8353

    Article  CAS  Google Scholar 

  • Arthur JC, Bikales NM, Segal L (1971) Cellulose and cellulose derivatives. Wiley, New York Part V eds

    Google Scholar 

  • Bala P, Samantaray BK, Srivastava SK, Nando GB (2004) Organomodified montmorillonite as filler in natural and synthetic rubber. J Appl Polym Sci 92(6):3583–3592

    Article  CAS  Google Scholar 

  • Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46(4):609–620

    Article  CAS  Google Scholar 

  • Biswas A, Shogren RL, Willett JL (2005) Solvent-free process to esterify polysaccharides. Biomacromolecules 6(4):1843–1845

    Article  CAS  PubMed  Google Scholar 

  • Calvin W (2000) Regenerated cellulose fibres. Woodhead publishers Ltd, CRC press LLC

    Google Scholar 

  • Cao NJ, Xu Q, Chen LF (1995) Acid hydrolysis of cellulose in zinc chloride solution. Appl Biochem Biotechnol 51–52(1):21–28

    Article  Google Scholar 

  • Carter WC, Magat M, Schneider WC, Smyth CP (1946) Dielectric dispersion and absorption in natural rubber, Neoprene, Butaprene NM and Butaprene S, gum, and tread stocks. Trans Faraday Soc 42:213–220

    Article  Google Scholar 

  • Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102(2):1988–1997

    Article  CAS  PubMed  Google Scholar 

  • Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Can J Chem 86(6):484–494

    Article  CAS  Google Scholar 

  • Dufresne A, Cavaille JY, Helbert W (1996) New nanocomposite materials: microcrystalline starch reinforced thermoplastic. Macromolecules 29(23):7624–7626

    Article  CAS  Google Scholar 

  • Freire MG, Teles ARR, Ferreira RAS, Carlos LD, Lopes-da-Silva JA, Coutinho JAP (2011) Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chem 13:3173–3180

    Article  CAS  Google Scholar 

  • Ismail H, Edyhan M, Wirjosentono B (2002) Bamboo fiber filled natural rubber composites: the effects of filler loading and bonding agent. Polym Test 21(2):139–144

    Article  CAS  Google Scholar 

  • Jamil MS, Ahmed I, Abdullah I (2006) Effects of rice husk filler on the mechanical and thermal properties of liquid natural rubber compatibilized high-densitypolyethylene/natural rubber blends. J Polym Res 13(4):315–321

    Article  CAS  Google Scholar 

  • Karmakar A, Chauhan SS, Modak JM, Chanda M (2007) Mechanical properties of wood–fiber reinforced polypropylene composites: effect of a novel compatibilizer with isocyanate functional group. Composites A 38(2):227–233

    Article  Google Scholar 

  • Kim JT, Oh TS, Lee DH (2004) Curing and barrier properties of NBR/organo-clay nanocomposites. Polym Int 53(4):406–411

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, volume 1, fundamentals and analytical methods. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12(3):633–641

    Article  CAS  PubMed  Google Scholar 

  • Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14):8280–8286

    Article  CAS  PubMed  Google Scholar 

  • Ning-Jun C, Xu Q, Chee-Shan C, Gong CS, Chen LF (1994) Cellulose hydrolysis using zinc chloride as a solvent and catalyst. Appl Biochem Biotech 45–46:521–530

    Google Scholar 

  • Otaigbe JU (1991) Dynamic mechanical response of a thermoplastic sheet molding compound-glass fiber composite. Polym Eng Sci 31(2):104–109

    Article  CAS  Google Scholar 

  • Putaux JL, Molina-Boisseau S, Momaur T, Dufresne A (2003) Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules 4(5):1198–1202

    Article  CAS  PubMed  Google Scholar 

  • Qiu WL, Zhang FR, Endo T, Hirotsu T (2004) Milling-induced esterification between cellulose and mateated polypropylene. J Appl Polym Sci 91(3):1703–1709

    Article  CAS  Google Scholar 

  • Samir AMAS, Alloin F, Sanchez JY, Dufresne A (2004) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45(12):4149–4157

    Article  Google Scholar 

  • Schurz J (1999) A bright future for cellulose. Prog Polym Sci 24(4):481–483

    Article  CAS  Google Scholar 

  • Siqueira G, Tapin-Lingua S, Bras J, da Silva PD, Dufresne A (2011) Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 18(1):57–65

    Article  CAS  Google Scholar 

  • Stephen R, Varghese S, Joseph K, Oommen Z, Thomas S (2006) Diffusion and transport through nanocomposites of natural rubber (NR), carboxylated styrene butadiene rubber (XSBR) and their blends. J Membr Sci 282(1–2):162–170

    Article  CAS  Google Scholar 

  • Visakh PM, Thomas S, Oksman K, Mathew AP (2012) Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: processing and mechanical/thermal properties. Compos A Appl Sci Manuf 43(4):735–741

    Article  CAS  Google Scholar 

  • Vu YT, Mark JE, Pham LH, Engelhardt MJ (2001) Clay nanolayer reinforcement of cis-1,4-polyisoprene and epoxidized natural rubber. J Appl Polym Sci 82(6):1391–1403

    Article  CAS  Google Scholar 

  • Xu Q, Chen LF (1999) Ultraviolet spectra and structure of zinc–cellulose complexes in zinc chloride solution. J Appl Polym Sci 71(9):1441–1446

    Article  CAS  Google Scholar 

  • Youssef H, Lucian AL, Orlando JR (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  Google Scholar 

  • Zhang W, Zhang X, Liang M, Lu C (2008) Mechanochemical preparation of surface-acetylated cellulose powder to enhance mechanical properties of cellulose-filler-reinforced NR vulcanizates. Compos Sci Technol 68(12):2479–2484

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eldho Abraham or L. A. Pothan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, E., Deepa, B., Pothan, L.A. et al. Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex. Cellulose 20, 417–427 (2013). https://doi.org/10.1007/s10570-012-9830-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9830-1

Keywords

Navigation