Log in

Effective Electrochemical Nitrogen Reduction through π Back-donation Process in Mn3+ of Mn-doped g-C3N4

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ammonia (NH3) synthesis via nitrogen reduction reaction under mild conditions is challenging due to the difficulty of activating nitrogen. Herein, Mn-doped g-C3N4 (x-Mn-CN, x = 5, 10, and 15) catalysts with efficiency NRR performance were synthesized. The resulting 5-Mn-CN exhibits higher NRR performance (NH3 yield rate: 15.2 μg h−1 mgcat−1, Faradaic efficiency: 7.1%) at -0.4 V (vs. RHE) than others. It is found that the active sites of Mn3+ are generated by electron transfer from Mn2+ to the N of g-C3N4, and active N2 through the π back-donation process. This is evidenced by the experimental result that the NH3 yield rate of 5-Mn-CN significantly decreases from 15.2 μg h−1 mgcat−1 to 2.6 μg h−1 mgcat−1 after lowering the concentration of Mn3+. The concentration of Mn3+ is reduced by treating the catalyst in the ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) solution. This study enhances the understanding of N2 activation and provides insights into the transition metal-doped g-C3N4 as NRR catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Elishav O, Mosevitzky Lis B, Miller EM et al (2020) Progress and prospective of nitrogen-based alternative fuels. Chem Rev 120:5352–5436

    Article  CAS  PubMed  Google Scholar 

  2. Ye T-N, Park S-W, Lu Y et al (2020) Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583:391–395

    Article  CAS  PubMed  Google Scholar 

  3. Erisman JW, Sutton MA, Galloway J et al (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639

    Article  CAS  Google Scholar 

  4. Zhang G, Li X, Chen K et al (2023) Tandem electrocatalytic Nitrate reduction to ammonia on MBenes. Angew Chem Int Ed 62:e202300054

    Article  CAS  Google Scholar 

  5. Kojima Y, Yamaguchi M (2022) Ammonia as a hydrogen energy carrier. Int J Hydrogen Energy 47:22832–22839

    Article  CAS  Google Scholar 

  6. Huang L, Tao L, Pang K et al (2023) MOF-derived Fe2O3/MoSe2 composites for promoted electrocatalytic nitrogen fixation. Catal Sci Technol 13:3629–3637

    Article  CAS  Google Scholar 

  7. Wang M, Khan MA, Mohsin I et al (2021) Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes? Energy Environ Sci 14:2535–2548

    Article  CAS  Google Scholar 

  8. Rosca V, Duca M, de Groot MT et al (2009) Nitrogen Cycle Electrocatalysis. Chem Rev 109:2209–2244

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Wang H, Priest C et al (2021) Advanced Electrocatalysis for Energy and Environmental Sustainability via Water and Nitrogen Reactions. Adv Mater 33:2000381

    Article  CAS  Google Scholar 

  10. Mukherjee S, Yang X, Shan W et al (2020) Atomically Dispersed Single Ni Site Catalysts for Nitrogen reduction toward Electrochemical Ammonia Synthesis Using N2 and H2O. Small Methods 4:1900821

    Article  CAS  Google Scholar 

  11. J. **ang, C. Qiang, S. Shang et al (2024) Tandem Electrocatalytic Reduction of Nitrite to Ammonia on Rhodium–Copper Single Atom Alloys. Adv Funct Mater n/a:2401941

  12. Jeerh G, Zhang M, Tao S (2021) Recent progress in ammonia fuel cells and their potential applications. J Mater Chem A 9:727–752

    Article  CAS  Google Scholar 

  13. Guo T, Zhou W, Zhu J et al (2024) Asymmetric empty orbitals in ZrO2-BCN for enhancing electrocatalytic hydrogenation of nitrogen to ammonia. Appl Surf Sci 657:159781

    Article  CAS  Google Scholar 

  14. Wang F, Shang S, Sun Z et al (2024) P-Block Antimony-Copper Single-Atom Alloys for Selective Nitrite Electroreduction to Ammonia. ACS Nano 18:13141–13149

    Article  CAS  PubMed  Google Scholar 

  15. Hu L, Liu K, Guo Y et al (2023) Oxygen vacancies-rich Cu-W18O49 nanorods supported on reduced graphene oxide for electrochemical reduction of N2 to NH3. J Colloid Interface Sci 644:285–294

    Article  CAS  PubMed  Google Scholar 

  16. Chen K, Wang G, Guo Y et al (2023) Iridium single-atom catalyst for highly efficient NO electroreduction to NH3. Nano Res 16:8737–8742

    Article  CAS  Google Scholar 

  17. Zhao H, **ang J, Sun Z et al (2024) Electroreduction of Nitrite to Ammonia over a Cobalt Single-Atom Catalyst. ACS Sustain Chem Eng 12:2783–2789

    Article  CAS  Google Scholar 

  18. Greeley J, Stephens IEL, Bondarenko AS et al (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1:552–556

    Article  CAS  PubMed  Google Scholar 

  19. Zhao J, Shan W, Zhang P et al (2020) Solvent-free and mechanochemical synthesis of N-doped mesoporous carbon from tannin and related gas sorption property. Chem Eng J 381:122579

    Article  CAS  Google Scholar 

  20. Gao M, Feng J, He F et al (2020) Carbon microspheres work as an electron bridge for degrading high concentration MB in CoFe2O4@carbon microsphere/g-C3N4 with a hierarchical sandwich-structure. Appl Surf Sci 507:145167

    Article  CAS  Google Scholar 

  21. Zhou Z, Shen Y, Li Y et al (2015) Chemical Cleavage of Layered Carbon Nitride with Enhanced Photoluminescent performances and photoconduction. ACS Nano 9:12480–12487

    Article  CAS  PubMed  Google Scholar 

  22. Dong MM, He C, Zhang WX (2017) A tunable and sizable bandgap of a g-C3N4/graphene/g-C3N4 sandwich heterostructure: a van der Waals density functional study. J Mater Chem C 5:3830–3837

    Article  CAS  Google Scholar 

  23. Zuluaga S, Liu L-H, Shafiq N et al (2015) Structural band-gap tuning in g-C3N4. Phys Chem Chem Phys 17:957–962

    Article  CAS  PubMed  Google Scholar 

  24. Patnaik S, Behera A, Parida K (2021) A review on g-C3N4/graphene nanocomposites: multifunctional roles of graphene in the nanohybrid photocatalyst toward photocatalytic applications. Catal Sci Technol 11:6018–6040

    Article  CAS  Google Scholar 

  25. Reddy KR, Reddy CHV, Nadagouda MN et al (2019) Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: Synthesis methods, properties and photocatalytic applications. J Environ Manage 238:25–40

    Article  CAS  PubMed  Google Scholar 

  26. Safaei J, Mohamed NA, Mohamad Noh MF et al (2018) Graphitic carbon nitride (g-C3N4) electrodes for energy conversion and storage: a review on photoelectrochemical water splitting, solar cells and supercapacitors. J Mater Chem A 6:22346–22380

    Article  CAS  Google Scholar 

  27. Yu J, Ren X, Lu J et al (2022) Cobalt do** of porous graphitic carbon nitride with CoN bonds promotes electrocatalytic N2 fixation under ambient conditions. J Alloys Compd 902:163862

    Article  CAS  Google Scholar 

  28. Cai Z, Chen J, **ng S et al (2021) Highly fluorescent g-C3N4 nanobelts derived from bulk g-C3N4 for NO2 gas sensing. J Hazard Mater 416:126195

    Article  CAS  PubMed  Google Scholar 

  29. Chubenko EB, Kovalchuk NG, Komissarov IV et al (2022) Chemical vapor deposition of 2D Crystallized g-C3N4 Layered Films. J Phys Chem C 126:4710–4714

    Article  CAS  Google Scholar 

  30. Stefa S, Griniezaki M, Dimitropoulos M et al (2023) Highly Porous Thin-Layer g-C3N4 nanosheets with enhanced adsorption capacity. ACS Appl Nano Mater 6:1732–1743

    Article  CAS  Google Scholar 

  31. Sun S, Liang S (2017) Recent advances in functional mesoporous graphitic carbon nitride (mpg-C3N4) polymers. Nanoscale 9:10544–10578

    Article  CAS  PubMed  Google Scholar 

  32. Pan G, Sun Z (2021) Cu-doped g-C3N4 catalyst with stable Cu0 and Cu+ for enhanced amoxicillin degradation by heterogeneous electro-Fenton process at neutral pH. Chemosphere 283:131257

    Article  CAS  PubMed  Google Scholar 

  33. An Q, Zhang H, Liu N et al (2023) Fe-doped g-C3N4 synthesized by supramolecular preorganization for enhanced photo-Fenton activity. Sep Purif Technol 315:123673

    Article  CAS  Google Scholar 

  34. Wang X, Huang J, Hu F et al (2021) Synthesis of B-doped C3N4 nanosheets by secondary sintering for enhanced electrocatalytic nitrogen fixation performance. J Nanopart Res 23:63

    Article  Google Scholar 

  35. Zhao Z, Long Y, Chen Y et al (2022) Phosphorus doped carbon nitride with rich nitrogen vacancy to enhance the electrocatalytic activity for nitrogen reduction reaction. Chem Eng J 430:132682

    Article  CAS  Google Scholar 

  36. Ludden PW, Burris RH (1976) Activating Factor for the Iron Protein of Nitrogenase from Rhodospirillum rubrum. Science 194:424–426

    Article  CAS  PubMed  Google Scholar 

  37. Ji Y, Cheng W, Li C et al (2022) Oxygen vacancies of CeO2 Nanospheres by Mn-Do**: an efficient Electrocatalyst for N2 reduction under ambient conditions. Inorg Chem 61:28–31

    Article  CAS  PubMed  Google Scholar 

  38. Wang X, Wu D, Liu S et al (2021) Folic Acid self-assembly enabling manganese single-atom electrocatalyst for selective nitrogen reduction to ammonia. Nano-Micro Letters 13:125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chu K, Liu Y-P, Li Y-B et al (2020) Multi-functional Mo-do** in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation. Appl Catal B 264:118525

    Article  CAS  Google Scholar 

  40. Li J, Zhang Z, Cui W et al (2018) The Spatially Oriented Charge Flow and Photocatalysis Mechanism on Internal van der Waals Heterostructures Enhanced g-C3N4. ACS Catal 8:8376–8385

    Article  CAS  Google Scholar 

  41. Cheng J, Hu Z, Lv K et al (2018) Drastic promoting the visible photoreactivity of layered carbon nitride by polymerization of dicyandiamide at high pressure. Appl Catal B 232:330–339

    Article  CAS  Google Scholar 

  42. Niu P, Zhang L, Liu G et al (2012) Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities. Adv Funct Mater 22:4763–4770

    Article  CAS  Google Scholar 

  43. Liu G, Zhao G, Zhou W et al (2016) In Situ Bond Modulation of Graphitic Carbon Nitride to Construct p–n Homojunctions for Enhanced Photocatalytic Hydrogen Production. Adv Funct Mater 26:6822–6829

    Article  CAS  Google Scholar 

  44. Priyanka V, Savithiri G, Subadevi R et al (2019) Physicochemical exfoliation of graphene sheets using graphitic carbon nitride. New J Chem 43:16200–16206

    Article  CAS  Google Scholar 

  45. Wang J-C, Cui C-X, Li Y et al (2017) Porous Mn doped g-C3N4 photocatalysts for enhanced synergetic degradation under visible-light illumination. J Hazard Mater 339:43–53

    Article  CAS  PubMed  Google Scholar 

  46. Li H-J, Sun B-W, Sui L et al (2015) Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation. Phys Chem Chem Phys 17:3309–3315

    Article  CAS  PubMed  Google Scholar 

  47. Shi A, Li H, Yin S et al (2017) Effect of conjugation degree and delocalized π-system on the photocatalytic activity of single layer g-C3N4. Appl Catal B 218:137–146

    Article  CAS  Google Scholar 

  48. **ang Q, Yu J, Jaroniec M (2011) Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites. J Phys Chem C 115:7355–7363

    Article  CAS  Google Scholar 

  49. Niu P, Qiao M, Li Y et al (2018) Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution. Nano Energy 44:73–81

    Article  CAS  Google Scholar 

  50. Ilton ES, Post JE, Heaney PJ et al (2016) XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl Surf Sci 366:475–485

    Article  CAS  Google Scholar 

  51. Fan J, Qin H, Jiang S (2019) Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: The role of superoxide anion and singlet oxygen. Chem Eng J 359:723–732

    Article  CAS  Google Scholar 

  52. Li J, Fang J, Gao L et al (2017) Graphitic carbon nitride induced activity enhancement of OMS-2 catalyst for pollutants degradation with peroxymonosulfate. Appl Surf Sci 402:352–359

    Article  CAS  Google Scholar 

  53. Liu S, Li A, Yang C et al (2022) MnO2/Mn2O3 with self-triggered oxygen-defects for superior pseudocapacitive energy storage. Appl Surf Sci 571:151306

    Article  CAS  Google Scholar 

  54. Arif M, Kumar A, Asim Mushtaq M et al (2023) Edge-hosted CoFeB active sites with graphene nanosheets for highly selective nitrogen reduction reaction towards ambient ammonia synthesis. Chem Eng J 473:145368

    Article  CAS  Google Scholar 

  55. Chu K, Liu Y-P, Wang J et al (2019) NiO Nanodots on Graphene for Efficient Electrochemical N2 Reduction to NH3. ACS Appl Energy Mater 2:2288–2295

    Article  CAS  Google Scholar 

  56. Hu X, Sun Y, Guo S et al (2021) Identifying electrocatalytic activity and mechanism of Ce1/3NbO3 perovskite for nitrogen reduction to ammonia at ambient conditions. Appl Catal B 280:119419

    Article  CAS  Google Scholar 

  57. Chen Y, Liu H, Ha N et al (2020) Revealing nitrogen-containing species in commercial catalysts used for ammonia electrosynthesis. Nat Catal 3:1055–1061

    Article  CAS  Google Scholar 

  58. Wang X, Luo M, Lan J et al (2021) Nanoporous Intermetallic Pd3Bi for Efficient Electrochemical Nitrogen Reduction. Adv Mater 33:2007733

    Article  CAS  Google Scholar 

  59. Huang X, **ng X, **ong W et al (2024) Facile synthesis of Ni-based oxides nanocatalyst: effect of calcination temperature on NRR properties of NiO. Carbon Lett 34:1197–1206

    Article  Google Scholar 

  60. Su H, Chen L, Chen Y et al (2020) Single Atoms of Iron on MoS2 Nanosheets for N2 Electroreduction into Ammonia. Angew Chem Int Ed 59:20411–20416

    Article  CAS  Google Scholar 

  61. Andrade CEO, Oliveira AF, Neves AA et al (2016) A new spectrophotometric method for determination of EDTA in water using its complex with Mn(III). Spectrochim Acta Part A Mol Biomol Spectrosc 168:253–257

    Article  CAS  Google Scholar 

  62. Klewicki JK, Morgan JJ (1998) Kinetic Behavior of Mn(III) Complexes of Pyrophosphate, EDTA, and Citrate. Environ Sci Technol 32:2916–2922

    Article  CAS  Google Scholar 

  63. Fei H, Liu R, Wang J et al (2023) Targeted modulation of competitive active sites toward Nitrogen Fixation via Sulfur Vacancy Engineering Over MoS2. Adv Funct Mater 33:2302501

    Article  CAS  Google Scholar 

  64. Ma Y, Yang T, Zou H et al (2020) Synergizing Mo Single Atoms and Mo2C Nanoparticles on CNTs Synchronizes Selectivity and Activity of Electrocatalytic N2 Reduction to Ammonia. Adv Mater 32:2002177

    Article  CAS  Google Scholar 

  65. Tan H, Ji Q, Wang C et al (2022) Asymmetrical π back-donation of hetero-dicationic Mo4+-Mo6+ pairs for enhanced electrochemical nitrogen reduction. Nano Res 15:3010–3016

    Article  CAS  Google Scholar 

  66. Chu K, Li Q-Q, Liu Y-P et al (2020) Filling the nitrogen vacancies with sulphur dopants in graphitic C3N4 for efficient and robust electrocatalytic nitrogen reduction. Appl Catal B 267:118693

    Article  CAS  Google Scholar 

  67. Amrillah T, Hermawan A, Alviani VN et al (2021) MXenes and their derivatives as nitrogen reduction reaction catalysts: recent progress and perspectives. Mater Today Energy 22:100864

    Article  CAS  Google Scholar 

  68. Xu H, Ithisuphalap K, Li Y et al (2020) Electrochemical ammonia synthesis through N2 and H2O under ambient conditions: Theory, practices, and challenges for catalysts and electrolytes. Nano Energy 69:104469

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hexin Zhang or **g Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. The Mn3+ were formed by electron transfer from Mn2+ to N of g-C3N4

2. Mn3+ were verified as the active sites of NRR using EDTA-2Na.

3. Mn-doped g-C3N4 exhibited a high NH3 yield rate: 15.2 μg mgcat-1 h-1

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4438 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Lu, Y., Li, C. et al. Effective Electrochemical Nitrogen Reduction through π Back-donation Process in Mn3+ of Mn-doped g-C3N4. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04772-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04772-1

Keywords

Navigation