Log in

Nickel Phosphide-Coupled Methylammonium Lead Halide as an Efficient and Stable Photocatalyst for Photocatalytic H2 Evolution from HI Splitting

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Organic–inorganic halide perovskites have shown great potential for the conversion of solar energy to hydrogen fuel via photocatalytic reaction due to their excellent optoelectronic properties. However, one of the biggest challenges for organic–inorganic halide perovskite materials in photocatalytic hydrogen evolution reaction (HER) lies in the serious recombination of photogenerated electron and hole pairs. Herein, we reported that the coupling of nickel phosphide (Ni2P) nanoparticles with methylammonium lead halide (MAPbI3) perovskite can significantly enhance the photocatalytic H2 evolution performance of MAPbI3. We found that Ni2P coupling can promote the electron exaction from MAPbI3, thereby accelerating the charge transfer and retarding the charge recombination. Moreover, Ni2P particles exhibited good electrocatalytic activity for the HER. Consequently, the Ni2P/MAPbI3 composite exhibited ca. 459 times higher activity than the parent MAPbI3 in photocatalytic HI splitting reaction. Moreover, the Ni2P/MAPbI3 composite exhibited excellent stability during cycling tests. This work demonstrated the potential of using Ni2P as non-noble metal-based co-catalyst to promote the photocatalytic performance of organic–inorganic halide perovskite.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Davis SJ, Lewis NS, Shaner M, Aggarwal S, Arent D, Azevedo IL, Benson SM, Bradley T, Brouwer J, Chiang YM, Clack CTM, Cohen A, Doig S, Edmonds J, Fennell P, Field CB, Hannegan B, Hodge BM, Hoffert MI, Ingersoll E, Jaramillo P, Lackner KS, Mach KJ, Mastrandrea M, Ogden J, Peterson PF, Sanchez DL, Sperling D, Stagner J, Trancik JE, Yang CJ, Caldeira K (2018) Net-zero emissions energy systems. Science 360:eaas9793

    Article  PubMed  Google Scholar 

  2. Cui ZH, Wang P, Wu YQ, Liu XL, Chen GQ, Gao P, Zhang QQ, Wang ZY, Zheng ZK, Cheng HF, Liu YY, Dai Y, Huang BB (2022) Space-confined growth of lead-free halide perovskite Cs3Bi2Br9 in MCM-41 molecular sieve as an efficient photocatalyst for CO2 reduction at the gas-solid condition under visible light. Appl Catal B 310:121375

    Article  CAS  Google Scholar 

  3. Cui ZH, Zhang QQ, Fu H, Liu QH, Liu XL, Wu YQ, Gao P, Wang ZY, Zheng ZK, Cheng HF, Liu YY, Dai Y, Huang BB, Wang P (2023) Composite of lead-free halide perovskite Cs3Bi2Br9 with TiO2 as an efficient photocatalyst for C(sp3)–H bond activation. Appl Catal B 333:122812

    Article  CAS  Google Scholar 

  4. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  PubMed  Google Scholar 

  5. Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C, Pan Z, Takata T, Nakabayashi M, Shibata N, Li Y, Sharp ID, Kudo A, Yamada T, Domen K (2016) Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding. Nat Mater 15:611–615

    Article  CAS  PubMed  Google Scholar 

  6. Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water. Nature 440:295

    Article  CAS  PubMed  Google Scholar 

  7. Fu H, Liu XL, Wu YQ, Zhang QQ, Wang ZY, Zheng ZK, Cheng HF, Liu YY, Dai Y, Huang BB, Wang P (2023) Construction of a bismuth-based perovskite direct Z-scheme heterojunction Au–Cs3Bi2Br9/V2O5 for efficient photocatalytic CO2 reduction. Appl Surf Sci 622:156964

    Article  CAS  Google Scholar 

  8. Zhang H, Chen Y, Wang H, Wang H, Ma W, Zong X, Li C (2020) Carbon encapsulation of organic–inorganic hybrid perovskite toward efficient and stable photo-electrochemical carbon dioxide reduction. Adv Energy Mater 10:2002105

    Article  CAS  Google Scholar 

  9. Yue DT, Zhang TY, Wang T, Yan X, Guo C, Qian XF, Zhao YX (2020) Potassium stabilization of methylammonium lead bromide perovskite for robust photocatalytic H2 generation. EcoMat 2:e12015

    Article  CAS  Google Scholar 

  10. Feng HJ, Paudel TR, Tsymbal EY, Zeng XC (2015) Tunable optical properties and charge separation in CH3NH3SnxPb1−xI3/TiO2-based planar perovskites cells. J Am Chem Soc 137:8227–8236

    Article  CAS  PubMed  Google Scholar 

  11. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  CAS  PubMed  Google Scholar 

  12. Liu XL, Zhang QQ, Zhao SL, Wang ZY, Liu YY, Zheng ZK, Cheng HF, Dai Y, Huang BB, Wang P (2023) Integrating mixed halide perovskite photocatalytic HI splitting and electrocatalysis into a loop for efficient and robust pure water splitting. Adv Mater 35:2208915

    Article  CAS  Google Scholar 

  13. Wang H, Wang XM, Chen RT, Zhang HF, Wang XL, Wang JH, Zhang J, Mu LC, Wu KF, Fan FT, Zong X, Li C (2019) Promoting photocatalytic H2 evolution on organic–inorganic hybrid perovskite nanocrystals by simultaneous dual-charge transportation modulation. ACS Energy Lett 4:40–47

    Article  CAS  Google Scholar 

  14. Wu YQ, Wang P, Zhu XL, Zhang QQ, Wang ZY, Liu YY, Zou GZ, Dai Y, Whangbo MH, Huang BB (2018) Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv Mater 30:1704342

    Article  Google Scholar 

  15. Zhao ZJ, Wu JJ, Zheng YZ, Li N, Li XT, Tao X (2019) Ni3C-decorated MAPbI3 as visible-light photocatalyst for H2 evolution from HI splitting. ACS Catal 9:8144–8152

    Article  CAS  Google Scholar 

  16. Cai C, Teng Y, Wu JH, Li JY, Chen HY, Chen JH, Kuang DB (2020) In situ photosynthesis of an MAPbI3/CoP hybrid heterojunction for efficient photocatalytic hydrogen evolution. Adv Funct Mater 30:2001478

    Article  CAS  Google Scholar 

  17. Park S, Chang WJ, Lee CW, Park S, Ahn HY, Nam KT (2017) Photocatalytic hydrogen generation from hydroiodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat Energy 2:16185

    Article  CAS  Google Scholar 

  18. Liu XL, Dai DJ, Cui ZH, Zhang QQ, Gong XQ, Wang ZY, Liu YY, Zheng ZK, Cheng HF, Dai Y, Huang BB, Wang P (2022) Optimizing the reaction pathway by active site regulation in the CdS/Fe2O3 Z-scheme heterojunction system for highly selective photocatalytic benzylamine oxidation integrated with H2 production. ACS Catal 12:12386–12397

    Article  CAS  Google Scholar 

  19. Wu YQ, Wu Q, Zhang QQ, Lou ZZ, Liu KF, Ma YD, Wang ZY, Zheng ZK, Cheng HF, Liu YY, Dai Y, Huang BBA, Wang P (2022) An organometal halide perovskite supported Pt single-atom photocatalyst for H2 evolution. Energy Environ Sci 15:1271–1281

    Article  CAS  Google Scholar 

  20. Zhao H, Li YX, Zhang B, Xu T, Wang CY (2018) PtIx/((CH3)2NH2)3BiI6 as a well-dispersed photocatalyst for hydrogen production in hydroiodic acid. Nano Energy 50:665–674

    Article  CAS  Google Scholar 

  21. Tang YQ, Mak CH, Wang C, Fu Y, Li FF, Jia GH, Hsieh CW, Shen HH, Colmenares JC, Song HS, Yuan MJ, Chen Y, Hsu HY (2022) Bandgap funneling in bismuth-based hybrid perovskite photocatalyst with efficient visible-light-driven hydrogen evolution. Small Methods 6:2200326

    Article  CAS  Google Scholar 

  22. Wang F, Liu XY, Zhang ZG, Min SX (2020) A noble-metal-free MoS2 nanosheet-coupled MAPbI3 photocatalyst for efficient and stable visible-light-driven hydrogen evolution. Chem Commun 56:3281–3284

    Article  CAS  Google Scholar 

  23. Jiang LX, Guo YM, Qi SP, Zhang K, Chen JX, Lou YB, Zhao YX (2021) Amorphous NiCoB-coupled MAPbI3 for efficient photocatalytic hydrogen evolution. Dalton Trans 50:17960–17966

    Article  CAS  PubMed  Google Scholar 

  24. Xu M, Han L, Han YJ, Yu Y, Zhai JF, Dong SJ (2015) Porous CoP concave polyhedron electrocatalysts synthesized from metal–organic frameworks with enhanced electrochemical properties for hydrogen evolution. J Mater Chem A 3:21471–21477

    Article  CAS  Google Scholar 

  25. Liu Q, Tian JQ, Cui W, Jiang P, Cheng NY, Asiri AM, Sun XP (2014) Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew Chem Int Ed 53:6710–6714

    Article  CAS  Google Scholar 

  26. Jiang P, Liu Q, Liang YH, Tian JQ, Asiri AM, Sun XP (2014) A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew Chem Int Ed 53:12855–12859

    Article  CAS  Google Scholar 

  27. Tian LH, Yan XD, Chen XB (2016) Electrochemical activity of iron phosphide nanoparticles in hydrogen evolution reaction. ACS Catal 6:5441–5448

    Article  CAS  Google Scholar 

  28. Li GW, Sun Y, Rao JC, Wu JQ, Kumar A, Xu QN, Fu CG, Liu EK, Blake GR, Werner P, Shao BQ, Liu K, Parkin S, Liu XJ, Fahlman M, Liou SC, Auffermann G, Zhang J, Felser C, Feng XL (2018) Carbon-tailored semimetal MoP as an efficient hydrogen evolution electrocatalyst in both alkaline and acid media. Adv Energy Mater 8:1801258

    Article  Google Scholar 

  29. Wang TY, Du KZ, Liu WL, Zhu ZW, Shao YH, Li MX (2015) Enhanced electrocatalytic activity of MoP microparticles for hydrogen evolution by grinding and electrochemical activation. J Mater Chem A 3:4368–4373

    Article  CAS  Google Scholar 

  30. Liu W, Geng P, Li SQ, Zhu R, Liu WH, Lu HD, Chandrasekaran S, Pang YY, Fan DY, Liu YP (2020) Self-supported three-dimensional WP2 (WP) nanosheet arrays for efficient electrocatalytic hydrogen evolution. Int J Hydrog Energy 45:28576–28585

    Article  CAS  Google Scholar 

  31. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270

    Article  CAS  PubMed  Google Scholar 

  32. Zhang YP, Hao XQ, Ma XL, Liu H, ** ZL (2019) Special Z-scheme CdS@WO3 hetero-junction modified with CoP for efficient hydrogen evolution. Int J Hydrog Energy 44:13232–13241

    Article  CAS  Google Scholar 

  33. Zhao ZY, Tian F (2016) Theoretical study of the interfacial structure and properties of a CdS/FeP composite photocatalyst. Acta Phys Chim Sin 32:2511–2517

    Article  CAS  Google Scholar 

  34. Yan JW, Wang Y, Shi L (2022) The highly improved hydrogen evolution performance of a 0D/0D MoP-modified P-doped Mn0.5Cd0.5S photocatalyst. Dalton Trans 51:10279–10289

    Article  CAS  PubMed  Google Scholar 

  35. Song T, Zhang X, Matras-Postolek K, Yang P (2023) N-doped carbon layer promoted charge separation/transfer in WP/g-C3N4 heterostructures for efficient H2 evolution and 4-nitrophenol removal. Carbon 202:378–388

    Article  CAS  Google Scholar 

  36. Zhang YK, ** ZL (2019) Effective electron–hole separation over a controllably constructed WP/UiO-66/CdS heterojunction to achieve efficiently improved visible-light-driven photocatalytic hydrogen evolution. Phys Chem Chem Phys 21:8326–8341

    Article  CAS  PubMed  Google Scholar 

  37. Jiao YY, Li YK, Wang JS, He ZH, Li ZJ (2020) Double Z-scheme photocatalyst C3N4 nanotube/N-doped carbon dots/Ni2P with enhanced visible-light photocatalytic activity for hydrogen generation. Appl Surf Sci 534:147603

    Article  CAS  Google Scholar 

  38. Yu TP, Si YY, Lv ZH, Wang KH, Zhang Q, Liu X, Wang GX, **e GW, Jiang LH (2019) Cd0.5Zn0.5S/Ni2P noble-metal-free photocatalyst for high-efficient photocatalytic hydrogen production: Ni2P boosting separation of photocarriers. Int J Hydrog Energy 44:31832–31840

    Article  CAS  Google Scholar 

  39. Indra A, Acharjya A, Menezes PW, Merschjann C, Hollmann D, Schwarze M, Aktas M, Friedrich A, Lochbrunner S, Thomas A, Driess M (2017) Boosting visible-light-driven photocatalytic hydrogen evolution with an integrated nickel phosphide–carbon nitride system. Angew Chem Int Ed 56:1653–1657

    Article  CAS  Google Scholar 

  40. Guan QX, Li W, Zhang MH, Tao KY (2009) Alternative synthesis of bulk and supported nickel phosphide from the thermal decomposition of hypophosphites. J Catal 263:1–3

    Article  CAS  Google Scholar 

  41. Moon JS, Kim EG, Lee YK (2014) Active sites of Ni2P/SiO2 catalyst for hydrodeoxygenation of guaiacol: a joint XAFS and DFT study. J Catal 311:144–152

    Article  CAS  Google Scholar 

  42. Yan XR, Che S, Yang F, Xu ZS, Liu HC, Li CX, Yan L, Ta N, Sun SY, Wei Q, Fang L, Li YF (2021) Highly efficient water splitting catalyst composed of N, P-doped porous carbon decorated with surface P-enriched Ni2P nanoparticles. ACS Appl Mater Interfaces 14:20358–20367

    Article  PubMed  Google Scholar 

  43. Liu YR, Hu WH, Li X, Dong B, Shang X, Han GQ, Chai YM, Liu YQ, Liu CG (2016) One-pot synthesis of hierarchical Ni2P/MoS2 hybrid electrocatalysts with enhanced activity for hydrogen evolution reaction. Appl Surf Sci 383:276–282

    Article  CAS  Google Scholar 

  44. Huang ZP, Chen ZB, Chen ZZ, Lv CC, Meng H, Zhang C (2014) Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 8:8121–8129

    Article  CAS  PubMed  Google Scholar 

  45. Pu ZH, Liu Q, Tang C, Asiri AM, Sun XP (2014) Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale 6:11031–11034

    Article  CAS  PubMed  Google Scholar 

  46. Pan Y, Liu YQ, Liu CG (2015) Nanostructured nickel phosphide supported on carbon nanospheres: synthesis and application as an efficient electrocatalyst for hydrogen evolution. J Power Sources 285:169–177

    Article  CAS  Google Scholar 

  47. Wang JL, Yang Q, Zhang ZD, Sun SH (2010) Phase-controlled synthesis of transition-metal phosphide nanowires by Ullmann-type reactions. Chem Eur J 16:7916–7924

    Article  CAS  PubMed  Google Scholar 

  48. Wang WJ, An TC, Li GY, **a DH, Zhao HJ, Yu JC, Wong PK (2017) Earth-abundant Ni2P/g-C3N4 lamellar nanohybrids for enhanced photocatalytic hydrogen evolution and bacterial inactivation under visible light irradiation. Appl Catal B 217:570–580

    Article  CAS  Google Scholar 

  49. Tian S, Li X, Wang AJ, Prins R, Chen YY, Hu YK (2016) Facile preparation of Ni2P with a sulfur-containing surface layer by low-temperature reduction of Ni2P2S6. Angew Chem Int Ed 55:4030–4034

    Article  CAS  Google Scholar 

  50. Wang XM, Wang H, Zhang HF, Yu W, Wang XL, Zhao Y, Zong X, Li C (2018) Dynamic interaction between methylammonium lead iodide and TiO2 nanocrystals leads to enhanced photocatalytic H2 evolution from HI splitting. ACS Energy Lett 3:1159–1164

    Article  CAS  Google Scholar 

  51. Wu YQ, Wang P, Zhu XL, Zhang QQ, Wang ZY, Liu YY, Zou GZ, Dai Y, Whangbo MH, Huang BB (2018) Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv Mater 30:61704342

    Google Scholar 

  52. Park S, Chang WJ, Lee CW, Park S, Ahn HY, Nam KT (2017) Photocatalytic hydrogen generation from hydroiodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat Energy 2:816185

    Google Scholar 

  53. Li Q, Guo BD, Yu JG, Ran JR, Zhang BH, Yan HJ, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884

    Article  CAS  PubMed  Google Scholar 

  54. Guo Q, Liang F, Gao XY, Gan QC, Li XB, Li J, Lin ZS, Tung CH, Wu LZ (2018) Metallic Co2C: a promising co-catalyst to boost photocatalytic hydrogen evolution of colloidal quantum dots. ACS Catal 8:5890–5895

    Article  CAS  Google Scholar 

  55. Fang HB, Zhang XH, Wu JJ, Li N, Zheng YZ, Tao X (2018) Fragmented phosphorus-doped graphitic carbon nitride nanoflakes with broad sub-bandgap absorption for highly efficient visible-light photocatalytic hydrogen evolution. Appl Catal B 225:397–405

    Article  CAS  Google Scholar 

  56. Liu YN, Shen CC, Jiang N, Zhao ZW, Zhou X, Zhao SJ, Xu AW (2017) G-C3N4 hydrogen-bonding viologen for significantly enhanced visible-light photocatalytic H2 evolution. ACS Catal 7:8228–8234

    Article  CAS  Google Scholar 

  57. Zhou M, Wang SB, Yang PJ, Luo ZS, Yuan RS, Asiri AM, Wakeel M, Wang XC (2018) Layered heterostructures of ultrathin polymeric carbon nitride and ZnIn2S4 nanosheets for photocatalytic CO2 reduction. Chem Eur J 24:18529–18534

    Article  CAS  PubMed  Google Scholar 

  58. Chen Q, Zhou HP, Song TB, Luo S, Hong ZR, Duan HS, Dou LT, Liu YS, Yang Y (2014) Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett 14:4158–4163

    Article  CAS  PubMed  Google Scholar 

  59. Wang SB, Guan BY, Wang X, Lou XW (2018) Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution. J Am Chem Soc 140:15145–15148

    Article  CAS  PubMed  Google Scholar 

  60. Han C, Chen Z, Zhang N, Colmenares JC, Xu YJ (2015) Hierarchically CdS decorated 1D ZnO nanorods-2D graphene hybrids: low temperature synthesis and enhanced photocatalytic performance. Adv Funct Mater 25:221–229

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 22179015, 21872142, 22302026), LiaoNing Revitalization Talents Program (XLYC1807196), the fund of the State Key Laboratory of Catalysis in DICP (N-22-06).

Author information

Authors and Affiliations

Authors

Contributions

YX: Conceptualization, Methodology, Investigation, Data curation, Validation, Writing-review and editing. TX: Conceptualization, Methodology, Investigation, Data curation. SQ: Methodology, Investigation. HZ: Conceptualization, Methodology. HW: Methodology, Investigation. MB: Conceptualization, Validation, Investigation, Validation. BY: Conceptualization, Validation, Investigation, Validation. XZ: Conceptualization, Methodology, Validation, Writing-review and editing, Supervision, Funding acquisition.

Corresponding authors

Correspondence to Mindi Bai, Bo Yang or Xu Zong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2368 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Xu, T., Qi, S. et al. Nickel Phosphide-Coupled Methylammonium Lead Halide as an Efficient and Stable Photocatalyst for Photocatalytic H2 Evolution from HI Splitting. Catal Lett 154, 3346–3356 (2024). https://doi.org/10.1007/s10562-024-04586-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-024-04586-1

Keywords

Navigation