Log in

A Novel Polythiophene-Conjugated Polymer Photocatalyst Under Visible Light for Killing Multidrug-Resistant Bacteria

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The photocatalytic antibacterial method is one of the most effective and “green” methods for treating multidrug resistant (MDR) bacteria-caused infections. The most critical scientific question is how to improve the antibacterial efficiency of photosensitizers (PS). Herein, an organic-conjugated-polymer photocatalyst poly((E)-5-(2,5-dihydroxy-4-methylphenyl)-5′-(2-(5-methylthiophen-2-yl)vinyl)-[2,2'-bithiophene]-4-carboxylic acid) (PTH-COOH-(OH)2) has been successfully synthesized. A new route for develo** highly active organic-conjugated-polymer photocatalysts for environmental purification via the proper expansion of the backbone conjugate structure and the introduction of effective groups such as carboxyl and hydroxyl groups is proposed. The visible-light photocatalytic activities of PTH-COOH-(OH)2 were evaluated against methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis (S. epidermidis) and Escherichia coli (E. coli) under LED white light. A very high antimicrobial efficiency was achieved for optimized 0.3 mg mL−1 PTH-COOH-(OH)2 under visible light illumination. Over 7 log of MRSA was killed in 3 h, 7 log of S. epidermidis was killed in 3 h, and 93.3% decomposition of E. coli was achieved in 3 h. These photoantimicrobial effectiveness values are among the most widely published for conjugated polymer photocatalysts. The findings of trap** studies and electron spin resonance (ESR) spectroscopic investigations indicated that during the photocatalytic antimicrobial process, ·OH, 1O2, ·O2, and e are largely reactive oxygen species (ROS). Importantly, following recycling processes, the PTH-COOH-(OH)2 photocatalyst demonstrated satisfactory stability and excellent photocatalytic activity.

Graphical Abstract

The organic-conjugated-polymer photocatalysts poly((E)-5-(2,5-dihydroxy-4-methylphenyl)-5′-(2-(5-methylthiophen-2-yl)vinyl)-[2,2′-bithiophene]-4-carboxylic acid) (PTH-COOH-(OH)2) is successfully synthesized using the Stille coupling reaction. PTH-COOH-(OH)2 exhibits more outstanding photocatalytic antibacterial activity and stability, and has broad-spectrum antibacterial efficacy that can kill Gram-positive bacteria (MRSA, Staphylococcus epidermidis) and Gram-negative bacteria (Escherichia coli) under visible light irradiationtreat. The highly photocatalytic antibacterial active is developed via the proper expansion of the backbone conjugate structure and the introduction of effective groups such as carboxyl and hydroxyl groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Coates A, Hu YM, Bax R, Page C (2002) The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov 1:895–910. https://doi.org/10.1038/nrd940

    Article  CAS  PubMed  Google Scholar 

  2. Ghosh S, Bornman C, Zafer MM (2021) Antimicrobial resistance threats in the emerging COVID-19 pandemic: where do we stand? J Infect Public Health 14:555–560. https://doi.org/10.1016/j.jiph.2021.02.011

    Article  PubMed  PubMed Central  Google Scholar 

  3. Iwu CD, Korsten L, Okoh AI (2020) The incidence of antibiotic resistance within and beyond the agricultural ecosystem: a concern for public health. Microbiologyopen. https://doi.org/10.1002/mbo3.1035

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jakovljevic M, Al-Ahdab S, Jurisevic M, Mouselli S (2018) Antibiotic resistance in Syria: a local problem turns into a global threat. Front Public Health. https://doi.org/10.3389/fpubh.2018.00212

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yemmireddy VK, Hung YC (2017) Using photocatalyst metal oxides as antimicrobial surface coatings to ensure food safety-opportunities and challenges. Compr Rev Food Sci Food Saf 16:617–631. https://doi.org/10.1111/1541-4337.12267

    Article  CAS  PubMed  Google Scholar 

  6. Ndaba B, Roopnarain A, Daramola MO, Adeleke R (2020) Influence of extraction methods on antimicrobial activities of lignin-based materials: a review. Sustain Chem Pharm. https://doi.org/10.1016/j.scp.2020.100342

    Article  Google Scholar 

  7. He YY, Hader DP (2002) Reactive oxygen species and UV-B: effect on cyanobacteria. Photochem Photobiol Sci 1:729–736. https://doi.org/10.1039/b110365m

    Article  CAS  PubMed  Google Scholar 

  8. Xu J, Huang J, Wang ZP, Zhu YF (2020) Enhanced visible-light photocatalytic degradation and disinfection performance of oxidized nanoporous g-C3N4 via decoration with graphene oxide quantum dots. Chin J Catal 41:474–484. https://doi.org/10.1016/s1872-2067(19)63501-1

    Article  CAS  Google Scholar 

  9. Zhou TT, Hu R, Wang LR, Qiu YP, Zhang GQ, Deng QY, Zhang HY, Yin PG, Situ B, Zhan CL, Qin AJ, Tang BZ (2020) An AIE-active conjugated polymer with high ROS-generation ability and biocompatibility for efficient photodynamic therapy of bacterial infections. Angew Chemie-Int Ed 59:9952–9956. https://doi.org/10.1002/anie.201916704

    Article  CAS  Google Scholar 

  10. Liu C, Xu WZ, Charpentier PA (2020) Synthesis and photocatalytic antibacterial properties of poly 2,11 ’-thiopheneethylenethiophene-alt-2,5-(3-carboxyl)thiophene. ACS Appl Polym Mater 2:1886–1896. https://doi.org/10.1021/acsapm.0c00109

    Article  CAS  Google Scholar 

  11. Amin R, Krammer B, Abdel-Kader N, Verwanger T, El-Ansary A (2010) Antibacterial effect of some benzopyrone derivatives. Eur J Med Chem 45:372–378. https://doi.org/10.1016/j.ejmech.2009.10.001

    Article  CAS  PubMed  Google Scholar 

  12. Guo YN, Zhang C, Chen Y, Nie ZW (2022) Research progress on the preparation and applications of laser-induced graphene technology. Nanomaterials. https://doi.org/10.3390/nano12142336

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jaswal S, Gaur B (2015) Morphological, mechanical and physio-chemical performance of ortho-cresol epoxy novolac based vinyl ester resin. Polish J Chem Technol 17:1–7. https://doi.org/10.1515/pjct-2015-0041

    Article  CAS  Google Scholar 

  14. Reis IMA, Conceição RS, Ferreira RS, dos Santos CC, da Silva GR, de Oliveira LM, Cassiano DSA, dos Junior MCS, Botura MB, da Silva VDA, Costa SL, da Silva TMS, Vieira IJC, R. B.-Filho, I. Branco, (2019) Alkene lactones from Persea fulva (Lauraceae): evaluation of their effects on tumor cell growth in vitro and molecular docking studies. Bioorg Chem 86:665–673. https://doi.org/10.1016/j.bioorg.2019.02.023

    Article  CAS  PubMed  Google Scholar 

  15. Hajji S, Chaker A, Jridi M, Maalej H, Jellouli K, Boufi S, Nasri M (2016) Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films. Environ Sci Pollut Res 23:15310–15320. https://doi.org/10.1007/s11356-016-6699-9

    Article  CAS  Google Scholar 

  16. Qian LJ, Wang HJ, Yang JY, Chen XL, Chang X, Nan Y, He ZY, Hu PZ, Wu WS, Liu TH (2020) Amino acid cross-linked graphene oxide membranes for metal ions permeation, insertion and antibacterial properties. Membranes. https://doi.org/10.3390/membranes10100296

    Article  PubMed  PubMed Central  Google Scholar 

  17. Weinstain R, Slanina T, Kand D, Klan P (2020) Visible-to-NIR-light activated release: from small molecules to nanomaterials. Chem Rev 120:13135–13272. https://doi.org/10.1021/acs.chemrev.0c00663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Palama IE, Di Maria F, Zangoli M, D’Amone S, Manfredi G, Barsotti J, Lanzani G, Ortolani L, Salatelli E, Gigli G, Barbarella G (2019) Enantiopure polythiophene nanoparticles Chirality dependence of cellular uptake, intracellular distribution and antimicrobial activity. RSC Adv 9:23036–23044. https://doi.org/10.1039/c9ra04782d

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang PX, Sun G (2021) Research progress in chemical and biological protective materials with integrated conventional “decontamination-and-sensing” functions. Mater Sci Eng R-Rep. https://doi.org/10.1016/j.mser.2021.100626

    Article  Google Scholar 

  20. Mascio CTM, Alder JD, Silverman JA (2007) Bactericidal action of daptomycin against stationary-phase and nondividing Staphylococcus aureus cells. Antimicrob Agents Chemother 51:4255–4260. https://doi.org/10.1128/aac.00824-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ananda AP, Manukumar HM, Krishnamurthy NB, Nagendra BS, Savitha KR (2019) Assessment of antibacterial efficacy of a biocompatible nanoparticle PC@ AgNPs against Staphylococcus aureus. Microb Pathog 126:27–39. https://doi.org/10.1016/j.micpath.2018.10.029

    Article  CAS  PubMed  Google Scholar 

  22. Guinane CM, Ben Zakour NL, Tormo-Mas MA, Weinert LA, Lowder BV, Cartwright RA, Smyth DS, Smyth CJ, Lindsay JA, Gould KA, Witney A, Hinds J, Bollback JP, Rambaut A, Penades JR, Fitzgerald JR (2010) Evolutionary genomics of Staphylococcus aureus reveals insights into the origin and molecular basis of ruminant host adaptation. Genome Biol Evol 2:454–466. https://doi.org/10.1093/gbe/evq031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Auezova L, Najjar A, Kfoury M, Fourmentin S, Greige-Gerges H (2020) Antibacterial activity of free or encapsulated selected phenylpropanoids against Escherichia coli and Staphylococcus epidermidis. J Appl Microbiol 128:710–720. https://doi.org/10.1111/jam.14516

    Article  CAS  PubMed  Google Scholar 

  24. Chung CJ, Lin HI, Chou CM, Hsieh PY, Hsiao CH, Shi ZY, He JL (2009) Inactivation of Staphylococcus aureus and Escherichia coli under various light sources on photocatalytic titanium dioxide thin film. Surf Coat Technol 203:1081–1085. https://doi.org/10.1016/j.surfcoat.2008.09.036

    Article  CAS  Google Scholar 

  25. Ananpattarachai J, Boonto Y, Kajitvichyanukul P (2016) Visible light photocatalytic antibacterial activity of Ni-doped and N-doped TiO2 on Staphylococcus aureus and Escherichia coli bacteria. Environ Sci Pollut Res 23:4111–4119. https://doi.org/10.1007/s11356-015-4775-1

    Article  CAS  Google Scholar 

  26. Santos CM, Mangadlao J, Ahmed F, Leon A, Advincula RC, Rodrigues DF (2012) Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology. https://doi.org/10.1088/0957-4484/23/39/395101

    Article  PubMed  Google Scholar 

  27. Zvab U, Marusic MB, Stangar UL (2012) Microplate-based assays for the evaluation of antibacterial effects of photocatalytic coatings. Appl Microbiol Biotechnol 96:1341–1351. https://doi.org/10.1007/s00253-012-4458-5

    Article  CAS  PubMed  Google Scholar 

  28. Gold K, Slay B, Knackstedt M, Gaharwar AK (2018) Antimicrobial activity of metal and metal-oxide based nanoparticles. Adv Ther. https://doi.org/10.1002/adtp.201700033

    Article  Google Scholar 

  29. Wang GM, Feng HQ, ** WH, Gao A, Peng X, Li W, Wu H, Li Z, Chu PK (2017) Long-term antibacterial characteristics and cytocompatibility of titania nanotubes loaded with Au nanoparticles without photocatalytic effects. Appl Surf Sci 414:230–237. https://doi.org/10.1016/j.apsusc.2017.04.053

    Article  ADS  CAS  Google Scholar 

  30. Chen QY, Wang YF, Wang YW, Zhang XC, Duan DH, Fan CM (2017) Nitrogen-doped carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced visible light driven photocatalytic activity and stability. J Colloid Interface Sci 491:238–245. https://doi.org/10.1016/j.jcis.2016.12.013

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Hasija V, Raizada P, Sudhaik A, Sharma K, Kumar A, Singh P, Jonnalagadda SB, Thakur VK (2019) Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review. Appl Mater Today 15:494–524. https://doi.org/10.1016/j.apmt.2019.04.003

    Article  Google Scholar 

  32. Fan GD, Ning RS, Yan ZS, Luo J, Du BH, Zhan JJ, Liu LS, Zhang J (2021) Double photoelectron-transfer mechanism in Ag AgCl/WO3/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for trimethoprim degradation. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.123964

    Article  PubMed  Google Scholar 

  33. Li JZ, Zhou MJ, Ye ZF, Wang HQ, Ma CC, Huo PW, Yan YS (2015) Enhanced photocatalytic activity of g-C3N4-ZnO/HNT composite heterostructure photocatalysts for degradation of tetracycline under visible light irradiation. RSC Adv 5:91177–91189. https://doi.org/10.1039/c5ra17360d

    Article  ADS  CAS  Google Scholar 

  34. Prashanth PA, Rayeendra RS, Krishna RH, Ananda S, Bhagya NP, Nagabhushana BM, Lingaraju K, Naika HR (2015) Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived alpha-Al2O3 nanoparticles. J Asian Ceram Soc 3:345–351. https://doi.org/10.1016/j.jascer.2015.07.001

    Article  Google Scholar 

  35. Kaviyarasu K, Magdalane CM, Kanimozhi K, Kennedy J, Siddhardha B, Reddy ES, Rotte NK, Sharma CS, Thema FT, Letsholathebe D, Mola GT, Maaza M (2017) Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method. J Photochem Photobiol B 173:466–475. https://doi.org/10.1016/j.jphotobiol.2017.06.026

    Article  CAS  PubMed  Google Scholar 

  36. Du YH, Liu XJ, Wang QL, Yu LM, Chu L, Sun ML (2022) Metal free benzothiadiazole-diketopyrrolopyrrole-based conjugated polymer/g-C3N4 photocatalyst for enhanced sterilization and degradation in visible to near-infrared region. J Colloid Interface Sci 608:103–113. https://doi.org/10.1016/j.jcis.2021.09.176

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Ribao P, Corredor J, Rivero MJ, Ortiz I (2019) Role of reactive oxygen species on the activity of noble metal-doped TiO2 photocatalysts. J Hazard Mater 372:45–51. https://doi.org/10.1016/j.jhazmat.2018.05.026

    Article  CAS  PubMed  Google Scholar 

  38. He WW, Wu HH, Wamer WG, Kim HK, Zheng JW, Jia HM, Zheng Z, Yin JJ (2014) Unraveling the enhanced photocatalytic activity and phototoxicity of ZnO/metal hybrid nanostructures from generation of reactive oxygen species and charge carriers. ACS Appl Mater Interfaces 6:15527–15535. https://doi.org/10.1021/am5043005

    Article  CAS  PubMed  Google Scholar 

  39. Han SK, Hwang TM, Yoon Y, Kang JW (2011) Evidence of singlet oxygen and hydroxyl radical formation in aqueous goethite suspension using spin-trap** electron paramagnetic resonance (EPR). Chemosphere 84:1095–1101. https://doi.org/10.1016/j.chemosphere.2011.04.051

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Zhao YL, Zhou YH, Chen JQ, Huang QY, Han Q, Liu B, Cheng GD, Li YH (2015) Quantitative proteomic analysis of sub-MIC erythromycin inhibiting biofilm formation of S-suis in vitro. J Proteomics 116:1–14. https://doi.org/10.1016/j.jprot.2014.12.019

    Article  CAS  PubMed  Google Scholar 

  41. Teo ACK, Roper DI (2015) Core steps of membrane-bound peptidoglycan biosynthesis: recent advances insight and opportunities. Antibiotics-Basel 4:495–520. https://doi.org/10.3390/antibiotics4040495

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang H, Wu Y, Feng MB, Tu WG, **ao T, **ong T, Ang HX, Yuan XZ, Chew JW (2018) Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. Water Res 144:215–225. https://doi.org/10.1016/j.watres.2018.07.025

    Article  CAS  PubMed  Google Scholar 

  43. Yi SX, Zhou Y, Zhang JM, Wang M, Zheng SH, Yang X, Duan L, Reis RL, Dai FY, Kundu SC, **ao B (2022) Flat Silk Cocoon-Based Dressing: Daylight-Driven Rechargeable Antibacterial Membranes Accelerate Infected Wound Healing. Adv Healthcare Mater. https://doi.org/10.1002/adhm.202201397

    Article  Google Scholar 

  44. Han DL, Ma MX, Han YJ, Cui ZD, Liang YQ, Liu XM, Li ZY, Zhu SL, Wu SL (2020) Eco-friendly hybrids of carbon quantum dots modified MoS2 for rapid microbial inactivation by strengthened photocatalysis. ACS Sustain Chem Eng 8:534–542. https://doi.org/10.1021/acssuschemeng.9b06045

    Article  CAS  Google Scholar 

  45. Kumar VGD, Balaji KR, Viswanatha R, Ambika G, Roopa R, Basavaraja BM, Chennabasappa M, Kumar CRR, Chen Z, Bui XT, Santosh MS (2022) Visible light photodegradation of 2,4-dichlorophenol using nanostructured NaBiS2: kinetics, cytotoxicity, antimicrobial and electrochemical studies of the photocatalyst. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.132174

    Article  PubMed  Google Scholar 

  46. Sung L, Du T, Hu C, Chen JN, Lu J, Lu ZC, Han HY (2017) Antibacterial activity of grophene oxide/g-C3N4 composite through photocatalytic disinfection under visible light. ACS Sustain Chem Eng 5:8693–8701. https://doi.org/10.1021/acssuschemeng.7b01431

    Article  CAS  Google Scholar 

  47. Bai HT, Zhang HY, Hu R, Chen H, Lv FT, Liu LB, Wang S (2017) Supramolecular conjugated polymer systems with controlled antibacterial activity. Langmuir 33:1116–1120. https://doi.org/10.1021/acs.langmuir.6b04469

    Article  CAS  PubMed  Google Scholar 

  48. Chen Z, Yuan HX, Liang HY (2017) Synthesis of multifunctional cationic poly(p-phenylenevinylene) for selectively killing bacteria and lysosome-specific imaging. ACS Appl Mater Interfaces 9:9260–9264. https://doi.org/10.1021/acsami.7b01609

    Article  CAS  PubMed  Google Scholar 

  49. Zhai LW, Zhang ZQ, Zhao YT, Tang YL (2018) Efficient antibacterial performance and effect of structure on property based on cationic conjugated polymers. Macromolecules 51:7239–7247. https://doi.org/10.1021/acs.macromol.8b01530

    Article  ADS  CAS  Google Scholar 

  50. Wang HP, Guo LX, Wang YX, Feng LH (2019) Bactericidal activity-tunable conjugated polymers as a human-friendly bactericide for the treatment of wound infections. Biomater Sci 7:3788–3794. https://doi.org/10.1039/c9bm00695h

    Article  CAS  PubMed  Google Scholar 

  51. Liu L, Wang XY, Zhu SX, Yao C, Ban DD, Liu RH, Li LD, Wang S (2020) Controllable targeted accumulation of fluorescent conjugated polymers on bacteria mediated by a saccharide bridge. Chem Mater 32:438–447. https://doi.org/10.1021/acs.chemmater.9b04034

    Article  CAS  Google Scholar 

  52. Zhang HJ, Liang YC, Zhao H, Qi RL, Chen Z, Yuan HX, Liang HY, Wang L (2020) Dual-mode antibacterial conjugated polymer nanoparticles for photothermal and photodynamic therapy. Macromol Biosci. https://doi.org/10.1002/mabi.201900301

    Article  PubMed  Google Scholar 

  53. Wu YF, Zang Y, Xu L, Wang JJ, Jia HG, Miao FJ (2021) Synthesis of high-performance conjugated microporous polymer/TiO2 photocatalytic antibacterial nanocomposites. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2021.112121

    Article  Google Scholar 

  54. Yang TY, Zhu EW, Guo HY, Du J, Wu YY, Liu CB, Che GB (2021) Visible light-driven D-A conjugated linear polymer and its coating for dual highly efficient photocatalytic degradation and disinfection. ACS Appl Mater Interfaces 13:51447–51458. https://doi.org/10.1021/acsami.1c14240

    Article  CAS  PubMed  Google Scholar 

  55. Xu XQ, Sun YS, Zhang MM, Zhao R, Zeng SH, Xu Y, Nie WY, Zhou YF, Chen PP (2022) Boosting the visible-light-driven photocatalytic antibacterial performance of MoS2 nanosheets by poly(3-(4-methyl-3’-thiophenoxy))propyltrimethylammonium chloride (PThM) modification. J Mater Chem B 10:4405–4415. https://doi.org/10.1039/d2tb00397j

    Article  CAS  PubMed  Google Scholar 

  56. Kang SF, Zhang ZH, He MF, Fang ZR, Sun D, Zheng LL, Chang XJ, Cui LF (2022) Harmonious K-I-O co-modification of g-C3N4 for improved charge separation and photocatalysis. Inorg Chem Front 9:950–958. https://doi.org/10.1039/d1qi01376a

    Article  CAS  Google Scholar 

  57. Bi Y, Shan D, Feng B, Wang S, Zhu E, Guo H, Yu J, Liu C, Du J (2023) Carboxyl group-decorated polythiophenes polymeric PBTE-T-COOH for visible-light-driven photocatalytic drug-resistant bacteria inactivation. Mater. Today Commun. 34:105148. https://doi.org/10.1016/j.mtcomm.2022.105148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Project of Jilin Province Development and Reform Commission (2021C036-7) (Pro. Chunbo Liu) and the Science and Technology Innovation Center Project of Jilin Province (YDZJ202102CXJD049) (Pro. Chunbo Liu)

Author information

Authors and Affiliations

Authors

Contributions

JD: conceptualization, methodology, formal analysis, writing—original draft, and writing—review and editing; XB: validation, investigation, and data curation; SW: data curation; CL: writing—review and editing; EZ: methodology, and formal analysis; CL: conceptualization, project administration, and funding acquisition; CM: project administration; HG: methodology, and resources.

Corresponding authors

Correspondence to Chunbo Liu, Chunhong Ma or Haiyong Guo.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Bai, X., Wang, S. et al. A Novel Polythiophene-Conjugated Polymer Photocatalyst Under Visible Light for Killing Multidrug-Resistant Bacteria. Catal Lett 154, 1865–1883 (2024). https://doi.org/10.1007/s10562-023-04409-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04409-9

Keywords

Navigation