Log in

Flower-Like ZnFe2O4/BiOCl Microspheres with Highly Exposed (001) Facet for Photocatalytic Reduction of CO2 in Cyclohexanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of ZnFe2O4/BiOCl composites with different microstructures were fabricated by hydrothermal method through tuning the content of oleylamine. The morphologies, crystal, and the optical absorption were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy. The SEM imagines and XRD diffractograms indicated that the content of oleylamine plays a key role in morphologies and controlling the growth plane of the prepared BiOCl. The photocatalytic activity of the prepared samples was estimated through reduction of CO2 in cyclohexanol under UV–Vis light irradiation. And cyclohexyl formate was produced by the esterification reaction between the reduction product of formic acid and cyclohexanol. Meanwhile, cyclohexanol was oxidized to cyclohexanone. The ZnFe2O4/BiOCl composites displayed higher photocatalytic activities than pristine BiOCl samples. The flower-like ZnFe2O4/BiOCl microspheres with the oleylamine content of 0.2% showed the highest photocatalytic activity. This was attributed to the ZnFe2O4/BiOCl microspheres with flower-like structure and highly exposed (001) facet, which has higher light-harvesting capacity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Zhang L, Zhang L, Chen Y, Zheng Y, Guo J, Wan S, Wang S, Ngaw CK, Lin J, Wang Y (2020) ACS Sustain Chem Eng 8:5270–5277

    Article  CAS  Google Scholar 

  2. Wu J, **e Y, Ling Y, Si J, Li X, Wang J, Ye H, Zhao J, Zhao Q, Hou Y (2020) Chem Eng J 400:125944–125952

    Article  CAS  Google Scholar 

  3. Zhu J, Li Y, Wang X, Zhao J, Wu Y, Li F (2019) ACS Sustain Chem Eng 7:14953–14961

    Article  CAS  Google Scholar 

  4. Kong XY, Ng BJ, Tan KH, Chen X, Wang H, Mohamed AR, Chai SP (2018) Catal Today 314:20–27

    Article  CAS  Google Scholar 

  5. Zhao G, Zhou W, Sun Y, Wang X, Liu H, Meng X, Chang K, Ye J (2018) Appl Catal B 226:252–257

    Article  CAS  Google Scholar 

  6. Hegazy IM, Geioushy RA, El-Sheikh SM, Shawky A, El-Sherbiny S, Kandil AHT (2020) J Environ Chem Eng 8:103887–103896

    Article  CAS  Google Scholar 

  7. Liang M, Borjigin T, Zhang Y, Liu B, Liu H, Guo H (2019) Appl Catal B 243:566–575

    Article  CAS  Google Scholar 

  8. Liu Y, Deng L, Sheng J, Tang F, Zeng K, Wang L, Liang K, Hu H, Liu YN (2019) Appl Surf Sci 498:143899–143907

    Article  CAS  Google Scholar 

  9. Zhang L, Niu CG, **e GX, Wen XJ, Zhang XG, Zeng GM (2017) ACS Sustain Chem Eng 5:4619–4629

    Article  CAS  Google Scholar 

  10. Cao J, Li J, Chu W, Cen W (2020) Chem Eng J 400:125813–125820

    Article  CAS  Google Scholar 

  11. Liu H, Huang J, Chen J, Zhong J, Li J, Ma D (2020) Chem Phys Lett 748:137401–137407

    Article  CAS  Google Scholar 

  12. Wang L, Wang R, Qiu T, Yang L, Han Q, Shen Q, Zhou X, Zhou Y, Zou Z (2021) Nano Lett 21:10260–10266

    Article  CAS  PubMed  Google Scholar 

  13. Lin E, Huang R, Wu J, Kang Z, Ke K, Qin N, Bao D (2021) Nano Energ 89:106403–106415

    Article  CAS  Google Scholar 

  14. Zhao H, Liu X, Dong Y, **a Y, Wang H, Zhu X, Appl ACS (2020) Mater Interfaces 12:31532–31541

    Article  CAS  Google Scholar 

  15. Li J, Li X, Yin Z, Wang X, Ma H, Wang L (2019) ACS Appl Mater Interfaces 11:29004–29013

    Article  CAS  PubMed  Google Scholar 

  16. Zheng C, Zhang C, He L, Zhang K, Zhang J, ** L, Asiri AM, Alamry KA, Chu X (2020) J Alloys Compd 849:156461–156471

    Article  CAS  Google Scholar 

  17. Guo W, Huang L, Liu X, Wang J, Zhang J (2022) Sensor Actuat B 354:131243

    Article  CAS  Google Scholar 

  18. Li J, Lu T, Zhao Z, Xu R, Li Y, Huang Y, Yang C, Zhang S, Tang Y (2020) Inorg Chem Commun 121:108236–108242

    Article  CAS  Google Scholar 

  19. Song G, **n F, Yin X (2015) J Colloid Interf Sci 442:60–66

    Article  CAS  Google Scholar 

  20. Sun J, Li X, Zhao Q, Liu B (2021) Appl Catal B 281:119478–119489

    Article  CAS  Google Scholar 

  21. Song G, **n F, Chen J, Yin X (2014) Appl Catal A 473:90–95

    Article  CAS  Google Scholar 

  22. Ye L, Zan L, Tian L, Peng T, Zhang J (2011) Chem Commun 47:6951–6953

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) Grant No. 21176192, the Natural Science projects of Shaanxi Polytechnic Institue (2021YKYB-056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guixian Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, G., Wu, X. Flower-Like ZnFe2O4/BiOCl Microspheres with Highly Exposed (001) Facet for Photocatalytic Reduction of CO2 in Cyclohexanol. Catal Lett 153, 637–642 (2023). https://doi.org/10.1007/s10562-022-04031-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04031-1

Keywords

Navigation