Log in

Ternary SO42−–ZrO2–TiO2 Solid Super Acid Catalyst for One-Step Synthesis of Adipicdihydrazide

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

An efficient SO42−–ZrO2–TiO2 super acid catalyst was fabricated via simple impregnation precipitation strategy and applied in one-step synthesis of adipicdihydrazide (ADH). The purity and yield of ADH reached up to 97.5 and 96.7% respectively without separation treatment. After five recycling of the catalyst, the ADH yield still remained 82%, revealing the excellent stability performance of SO42−–ZrO2–TiO2 catalyst. Further, the excellent catalytic performance could be attributed to (1) solid super acid existed in SO42−–ZrO2–TiO2; (2) robust SO42− maintained in ZrO2–TiO2; (3) the accelerated cleavage of C =O and improved nucleophilic attack reaction rate of hydrazine hydrate by vast proton produced. DFT calculation was employed to further analyze the electron cloud change of ZrO2–TiO2 with the SO42− introduction and calculate the adsorption energy barrier of SO42−–ZrO2–TiO2 for AA (− 2.08 eV).

Graphical Abstract

An efficient SO42−-ZrO2-TiO2 super acid catalyst was fabricated via simple impregnation precipitation strategy and applied in one-step synthesie of adipic dihydrazide. The resulting acidic centers of SO42−-ZrO2-TiO2 attracted electrons from surrounding water molecules to restore neutrality. Meanwhile, a large amount of H+ floated around in the reaction system, which could break the C=O double bond and improve the adipic acid conversion rate. The extreme catalytic activity was based on the fact that the electronic effects of SO42− and ZrO2-TiO2 facilitated the interaction with H+ in adipic acid and reduced hydrazine hydrate nucleophilic attack difficulty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10

Similar content being viewed by others

References

  1. Yang JG, Song BD, Zhang HT (2014) Chem Ind Eng 31:18–23

    CAS  Google Scholar 

  2. Koukiotis CG, Karabela MM, Sideridou ID (2012) Prog Org Coat 75:106–115

    Article  CAS  Google Scholar 

  3. Su WY, Chen KH, Chen YC, Lee YH, Tseng CL, Lin FH, Biomat J (2011) J Biomater Sci Polym E 22:1777–1797

    Article  CAS  Google Scholar 

  4. Benedict DJ, Parulekar SJ, Tsai SP (2003) Ind Eng Chem Res 42:2282–2291

    Article  CAS  Google Scholar 

  5. Sanz MT, Gmehling J (2006) Chem Eng J 123:1–8

    Article  CAS  Google Scholar 

  6. Xu DF, Yu SX (2003) Appl Chem Ind 32:21–23

    CAS  Google Scholar 

  7. Zhao XZ, Li TX, Wang DM, Zhang WN (2009) Henan Sci 11:1370–1372

    Google Scholar 

  8. **ong S, Wu HT, Yu BC (2013) Chem Bioeng 3:10–13

    Google Scholar 

  9. Fan G, Shen M, Zhang Z, Jia FJ (2009) Rare Earth 27:437–442

    Article  Google Scholar 

  10. Thiruvengadaravi KV, Nandagopal J, Baskaralingam P, SathyaSelvaBala V, Sivanesan S (2012) Fuel 98:1–4

    Article  CAS  Google Scholar 

  11. Welmaker GS, Sabalski JE (2004) Tetrahedron Lett 45:4851–4854

    Article  CAS  Google Scholar 

  12. Silva AM, Morales MA, Baggio-Saitovitch EM, Jordão E, Fraga MA (2009) Appl Catal A Gen 353:101–106

    Article  CAS  Google Scholar 

  13. Bedia KK, Elcin O, Seda U, Fatma K, Nathaly S, Sevim R, Dimoglo A (2006) Eur J Med Chem 41:1253–1261

    Article  CAS  PubMed  Google Scholar 

  14. Alekseeva EA, Lukyanenko AP, Gren AI (2012) Mendeleev Commun 22:263–264

    Article  CAS  Google Scholar 

  15. Qu Y, Zhao Y, **ong S, Wang C, Wang S, Zhu L, Ma L (2020) Energ Fuel 34:11041–11049

    Article  CAS  Google Scholar 

  16. Fan J, Ning P, Song Z, Liu X, Wang L, Wang J, Wang H, Long K, Zhang Q (2018) Chem Eng J 334:855–863

    Article  CAS  Google Scholar 

  17. Duan T, **ao Y, Zhang G, Hou B, Jia L, Li D (2020) J Chem Sci 132:1–8

    Article  CAS  Google Scholar 

  18. Kaur N, Ali A (2015) Renew Energ 81:421–431

    Article  CAS  Google Scholar 

  19. Zhou HB, Cao Y, Li J (2013) Appl Mech Mater 316–317:906–910

    Article  CAS  Google Scholar 

  20. Lu ZY, Wang HG, Mao ZY, Xu BY, Li GP (2016) Pe Tech Appl 5:428–432

    Google Scholar 

  21. Ropero-Vega JL, Aldana-Pérez A, Gómez R, Niño-Gómez ME (2010) Appl Catal A-Gen 379:24–29

    Article  CAS  Google Scholar 

  22. Wang Y, Craven M, Yu X, Ding J, Bryant P, Huang J, Tu X (2019) ACS Catal 9:10780–10793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cai S, Xu T, Wang P, Han L, Impeng S, Li Y, Yan T, Chen G, Shi L, Zhang D (2020) Environ Sci Technol 54:12752–12760

    Article  CAS  PubMed  Google Scholar 

  24. Feng Y, Zuo M, Wang T, Jia W, Zhao X, Zeng X, Sun Y, Tang X, Lei T, Lin L (2019) J Taiwan Inst Chem Eng 96:431–438

    Article  CAS  Google Scholar 

  25. Aissani L, Fellah M, Nouveau C, Abdul-Samad M, Montagne A, Alost A (2017) Surf Eng 36:69–77

    Article  CAS  Google Scholar 

  26. Yan B, Tan J, Wang D, Qiu J, Liu X (2020) Prog Nat Sci Mater 30:635–641

    Article  CAS  Google Scholar 

  27. Hou X, Qiu Y, Yuan E, Zhang X, Liu G (2017) Appl Catal A 537:12–23

    Article  CAS  Google Scholar 

  28. Himeno Y, Matsuda M, Shida K, Matsuda M (2020) Scr Mater 187:103–106

    Article  CAS  Google Scholar 

  29. Wan J, Fu L, Yang H, Wang K, ** F, Pan L, Li Y, Liu Y (2020) Ind Eng Chem Res 59:19918–19928

    Article  CAS  Google Scholar 

  30. Gu JL, Shao Y, Bu HT, Jia JL, Yao KF (2020) Corros Sci 165:108392

    Article  CAS  Google Scholar 

  31. Manrıquez ME, López T, Gómeza R, Navarrete J (2004) J Mol Catal A Chem 220:229–237

    Article  CAS  Google Scholar 

  32. Duan TM, **ao Y, Zhang GQ, Hou B, Jia LT, Li DB (2020) J Chem Sci 132:144

    Article  CAS  Google Scholar 

  33. Maity SK, Rana MS, Bej SK, Ancheyta-Juárez J, Murali Dhar G, Prasada Rao TSR (2001) Catal Lett 72:1–2

    Article  Google Scholar 

  34. Kong PS, Pérès Y, Cognet P, Senocq F, Daud WMAW, Aroua MK, Ahmad H, Sankaran R, Show PL (2020) Clean Technol Environ Policy 23:19

    Article  CAS  Google Scholar 

  35. Ryoo R, Park IS, Jun S, Lee CW, Kruk M, Jaroniec M (2001) J Am Chem Soc 123:1650–1657

    Article  CAS  PubMed  Google Scholar 

  36. Bhanja P, Ghosh K, Islam SS, Patra AK, Islam SM, Bhaumik A (2016) ACS Sustain Chem Eng 4:7147–7157

    Article  CAS  Google Scholar 

  37. Duan ZF, Qu LS, Hu ZD, Liu DJ, Liu RX, Zhang YZ, Zhen X, Zhang JY, Wang XH, Zhao GY (2020) Appl Surf Sci 529:147136

    Article  CAS  Google Scholar 

  38. Zeng SS, Lin P, Peng YC (2011) Mod Food Sci Technol 27:783–787

    CAS  Google Scholar 

  39. Xu X, Lu MQ, Ye WX, Dong HP, Shi DP (2012) Guangdong Chem 39:47–48

    CAS  Google Scholar 

  40. Ki S, Furukawa H, Kobayashi N, Itaya Y, Satsuma A (2009) Green Chem 11:1627

    Article  CAS  Google Scholar 

  41. Yang F, Li Y, Zhang Q, Sun X, Fan H, Xu N, Li G (2015) Carbohydr Polym 131:9–14

    Article  CAS  PubMed  Google Scholar 

  42. Marczewski M, Kamińska E, Marczewska H (2012) React Kinet Mech Cat 108:59–68

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC21978141) and of Shandong province (ZR2019BB010), the China Postdoctoral Science Foundation (2020M672015), the Open Project of Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (KFJJ2021009), the Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education &Hubei Key Laboratory of Catalysis and Materials Science (CHCL20004), the special fund of Bei**g Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology, and Qingdao Postdoctoral Applied Research Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Zhang or Zhiguo Lv.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 125 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, K., Liu, B. et al. Ternary SO42−–ZrO2–TiO2 Solid Super Acid Catalyst for One-Step Synthesis of Adipicdihydrazide. Catal Lett 152, 2756–2766 (2022). https://doi.org/10.1007/s10562-021-03837-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03837-9

Keywords

Navigation