Log in

K/LaFeMnO3 Perovskite-Type Oxide Catalyst for the Production of C2–C4 Olefins via CO Hydrogenation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

LaBO3 (B = Fe, Mn, and FeMn) perovskite-type oxides were prepared by sol–gel method and then used as catalysts in CO hydrogenation for light olefins. The catalysts were characterized using XRD, H2-TPR, SEM, CO (CO2)-TPD, and XPS. The results showed that the lattice oxygen migration and oxygen vacancies promoted oxygen mobility by do** Mn2+ at the B site, Moreover, the presence of manganese as a promoter in the catalyst increased olefin selectivity compared with the olefin selectivity of the catalyst containing iron at the B-site and exhibited resistance to carbon deposition; while reducing the metal elements. In CO hydrogenation, potassium-promoted LaFeMnO3 catalysts afforded high catalytic activity and C2=–C4= selectivity. An O/P value of 5.0 and a C2=–C4= fraction of 54% were achieved for all hydrocarbons with low methane selectivity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Torres Galvis HM, De Jong KP (2013) Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal 3(9):2130–2149

    Article  CAS  Google Scholar 

  2. Sheshko TF, Markova EB, Sharaeva AA et al (2019) Carbon monoxide hydrogenation over Gd(Fe/Mn)O3 perovskite-type catalysts. Pet Chem 59(12):1307–1313

    Article  CAS  Google Scholar 

  3. Sheshko TF, Serov YM, Dement’eva MV et al (2016) Catalytic hydrogenation of carbon monoxide over nanostructured perovskite-like gadolinium and strontium ferrites. Russ J Phys Chem A 90(5):926–931

    Article  Google Scholar 

  4. Bedel L, Roger AC, Rehspringer JL et al (2005) La(1−y)Co0.4Fe0.6O3−d perovskite oxides as catalysts for Fischer–Tropsch synthesis. J Catal 235:279–294

    Article  CAS  Google Scholar 

  5. Goldwasser MR, Dorantes VE, Perez ZMJ (2003) Modified iron perovskites as catalysts precursors for the conversion of syngas to low molecular weight alkenes. J Mol Catal A 193(1–2):227–236

    Article  CAS  Google Scholar 

  6. Sheshko TF, Kryuchkova TA, Serov YM et al (2017) New mixed perovskite-type Gd2−x Sr1+x Fe2O7 catalysts for dry reforming of methane, and production of light olefins. Catal Ind 9(2):162–169

    Article  Google Scholar 

  7. Sheshko TF, Sharaeva AA, Powell OK et al (2020) Carbon oxide hydrogenation over GdBO3 (B = Fe, Mn, Co) complex oxides: effect of carbon dioxide on product composition. Pet Chem 60(5):571–576

    Article  CAS  Google Scholar 

  8. Gao S, Liu N, Liu J et al (2020) Synthesis of higher alcohols by CO hydrogenation over catalysts derived from LaCo1−xMnxO3 perovskites: effect of the partial substitution of Co by Mn. Fuel 261:116415

    Article  CAS  Google Scholar 

  9. Torres Galvis HMT, Bitter JH, Davidian T et al (2012) Iron particle size effects for direct production of lower olefins from synthesis gas. J Am Chem Soc 134(39):16207–16215

    Article  CAS  Google Scholar 

  10. Zhao K, Li L, Zheng A et al (2017) Synergistic improvements in stability and performance of the double perovskite-type oxides La2xSrxFeCoO6 for chemical loo** steam methane reforming. Appl Energy 197:393–404

    Article  CAS  Google Scholar 

  11. Bedel L, Roger AC, Rehspringer JL et al (2004) Structure-controlled La-Co-Fe perovskite precursors for higher C2–C4 olefins selectivity in Fischer–Tropsch synthesis. Stud Surf Sci Catal 147:319–324

    Article  CAS  Google Scholar 

  12. Chou W, Wu P, Luo M et al (2020) Effects of Al, Si, Ti, Zr promoters on catalytic performance of iron-based Fischer–Tropsch synthesis catalysts. Catal Lett 150(7):1993–2002

    Article  CAS  Google Scholar 

  13. Jaroniec M, Solovyov LA (2006) Improvement of the Kruk–Jaroniec–Sayar method for pore size analysis of ordered silicas with cylindrical mesopores. Langmuir 22(16):6757–6760

    Article  CAS  Google Scholar 

  14. Ao M, Pham GH, Sage V et al (2016) Structure and activity of strontium substituted LaCoO3 perovskite catalysts for syngas conversion. J Mol Catal A 416:96–104

    Article  CAS  Google Scholar 

  15. Yang QL, Liu GL, Liu Y (2018) Perovskite-type oxides as the catalyst precursors for preparing supported metallic nanocatalysts: a review. Ind Eng Chem Res 57(1):1–17

    Article  CAS  Google Scholar 

  16. Tien Thao N, Son LT (2016) Production of cobalt-copper from partial reduction of La(Co, Cu)O3 perovskites for CO hydrogenation. J Sci Adv Mater Devices 1(3):337–342

    Article  Google Scholar 

  17. De Smit E, Weckhuysen BM (2008) The renaissance of iron-based Fischer–Tropsch synthesis: on the multifaceted catalyst deactivation behavior. Chem Soc Rev 37(12):2758–2781

    Article  Google Scholar 

  18. Fang YZ, Liu Y, Zhang LH (2011) LaFeO3-supported nano Co-Cu catalysts for higher alcohol synthesis from syngas. Appl Catal A 397(1):183–191

    Article  CAS  Google Scholar 

  19. Wang Y, Zheng Y, Wang Y et al (2019) Evaluation of Fe substitution in perovskite LaMnO3 for the production of high purity syngas and hydrogen. J Power Sources 449:227505

    Article  Google Scholar 

  20. Xu Y, Dhainaut J, Dacquin JP et al (2021) La1x(Sr, Na, K)xMnO3 perovskites for HCHO oxidation: the role of oxygen species on the catalytic mechanism. Appl Catal B 287:119955

    Article  CAS  Google Scholar 

  21. Chang H, Bjørgum E, Mihai O et al (2020) Effects of oxygen mobility in La-Fe-based perovskites on the catalytic activity and selectivity of methane oxidation. ACS Catal 10(6):3707–3719

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U20A20124).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-li Zhang or Qing-jie Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Lh., Gao, Xh., Ma, Jj. et al. K/LaFeMnO3 Perovskite-Type Oxide Catalyst for the Production of C2–C4 Olefins via CO Hydrogenation. Catal Lett 152, 1451–1460 (2022). https://doi.org/10.1007/s10562-021-03744-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03744-z

Keywords

Navigation