Log in

Highly Efficient Hydrogenation of Furfural to Furfuryl Alcohol Catalyzed by Pt Supported on Bi-Metallic MIL-100 (Fe, Mn/Co) MOFs Derivates Prepared by Hydrothermal Polyol Reduction Method

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The Pt/(Fe, Mn/Co)-BTC catalysts were fabricated by a facile ultrasonic impregnation assisted hydrothermal polyol reduction method using first MIL-100(Fe, Mn/Co) MOFs as supports and tested for selective hydrogenation of furfural (FAL) to furfuryl alcohol (FOL). Various characterizations including XRD, TG, FT-IR, N2 physical adsorption, ICP-OES, SEM, TEM and XPS were applied for exploring structure changes and surface properties of the catalysts. Over 98% conversion of FAL and 99% selectivity to FOL were achieved over Pt/(Fe, Mn)-BTC and Pt/(Fe, Co)-BTC, moreover, Pt/(Fe, Co)-BTC showed higher turnover frequency (TOF) of 1,044 h−1 and better cycle stability, which are better than other catalysts prepared by using H2, NaBH4, and formaldehyde as reductants. Overall, the formation of highly dispersed small-sized Pt NPs (about 1.7 nm) with much higher content of surface Pt0 on the catalysts is the key of excellent hydrogenation activity due to the strong interaction between Pt NPs and the bimetallic supports.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang CT, Wang L, Zhang J, Wang H, Lewis JP, **ao FS (2016) Product selectivity controlled by zeolite crystals in biomass hydrogenation over a palladium catalyst. J Am Chem Soc 138:7880–7883

    Article  CAS  PubMed  Google Scholar 

  2. **ao P, Zhu JJ, Zhao D, Zhao Z, Zaera F, Zhu YJ (2019) Porous LaFeO3 prepared by an in situ carbon templating method for catalytic transfer hydrogenation reactions. ACS Appl Mater Interfaces 11:15517–15527

    Article  CAS  PubMed  Google Scholar 

  3. Li ZX, Wei XY, Z, Yang, M, Zhang, X.L. Meng, S, Niu, D. Zhang, Z.M. Zong, (2020) Highly selective hydrogenation of furfural to furan-2-ylmethanol over zeolitic imidazolate frameworks-67-templated magnetic Cu–Co/C. Catal Lett 150:178–184

    Article  CAS  Google Scholar 

  4. Hu F, Wang Y, Xu SQ, Zhang ZQ, Chen Y, Fan JD, Yuan H, Gao LJ, **ao GM (2019) Efficient and selective Ni/Al2O3–C catalyst derived from metal-organic frameworks for the hydrogenation of furfural to furfuryl alcohol. Catal Lett 149:2158–2168

    Article  CAS  Google Scholar 

  5. Zhang ZH, Deng KJ (2015) Recent advances in the catalytic synthesis of 2,5-furandicarboxylic acid and its derivatives. ACS Catal 5:6529–6544

    Article  CAS  Google Scholar 

  6. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558

    Article  CAS  PubMed  Google Scholar 

  7. Islam MJ, Granollers Mesa M, Osatiashtiani A, Taylor MJ, Manayil JC, Parlett CMA, Isaacs MA, Kyriakou G (2020) The effect of metal precursor on copper phase dispersion and nanoparticle formation for the catalytic transformations of furfural. Appl Catal B-Environ 273:119062

    Article  CAS  Google Scholar 

  8. Golub KW, Sulmonetti TP, Darunte LA, Shealy MS, Jones CW (2019) Metal–organic-framework-derived Co/Cu–Carbon nanoparticle catalysts for furfural hydrogenation. ACS Appl Nano Mater 2:6040–6056

    Article  CAS  Google Scholar 

  9. Zhang M, Li ZH (2019) Cu/Cu2O-MC (MC = Mesoporous Carbon) for highly efficient hydrogenation of furfural to furfuryl alcohol under visible light. ACS Sustain Chem Eng 7:11485–11492

    Article  CAS  Google Scholar 

  10. Wang F, Zhang ZH (2016) Catalytic transfer hydrogenation of furfural into furfuryl alcohol over magnetic γ-Fe2O3@HAP catalyst. ACS Sustain Chem Eng 5:942–947

    Article  Google Scholar 

  11. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    Article  CAS  PubMed  Google Scholar 

  12. Nagaraja BM, Padmasri AH, David Raju B, Rama Rao KS (2007) Vapor phase selective hydrogenation of furfural to furfuryl alcohol over Cu–MgO coprecipitated catalysts. J Mol Catal A-Chem 265:90–97

    Article  CAS  Google Scholar 

  13. Wang T, Hu AY, Xu GZ, Liu C, Wang HJ, **a YM (2019) Porous Zr–thiophenedicarboxylate hybrid for catalytic transfer hydrogenation of bio-based furfural to furfuryl alcohol. Catal Lett 149:1845–1855

    Article  CAS  Google Scholar 

  14. Niu HY, Luo JJ, Li C, Wang BW, Liang CH (2019) Transfer hydrogenation of biomass-derived furfural to 2-methylfuran over CuZnAl catalysts. Ind Eng Chem Res 58:6298–6308

    Article  CAS  Google Scholar 

  15. Nguyen-Huy C, Lee J, Seo JH, Yang E, Lee J, Choi K, Lee H, Kim JH, Lee MS, Joo SH, Kwak JH, Lee JH, An K (2019) Structure-dependent catalytic properties of mesoporous cobalt oxides in furfural hydrogenation. Appl Catal A-Gen 583:117125

    Article  CAS  Google Scholar 

  16. Shi DC, Yang QF, Peterson C, Lamic-Humblot AF, Girardon JS, Griboval-Constant A, Stievano L, Sougrati MT, Briois V, Bagot PAJ, Wojcieszak R, Paul S, Marceau E (2019) Bimetallic Fe-Ni/SiO2 catalysts for furfural hydrogenation: identification of the interplay between Fe and Ni during deposition-precipitation and thermal treatments. Catal Today 334:162–172

    Article  CAS  Google Scholar 

  17. Wang YL, Liu C, Zhang XF (2020) One-step encapsulation of bimetallic Pd–Co nanoparticles within UiO-66 for selective conversion of furfural to cyclopentanone. Catal Lett 150:2158–2166

    Article  CAS  Google Scholar 

  18. Yi ZX, Xu H, Hu D, Yan K (2019) Facile synthesis of supported Pd catalysts by chemical fluid deposition method for selective hydrogenation of biomass-derived furfural. J Alloys Compd 799:59–65

    Article  CAS  Google Scholar 

  19. Li MH, He J, Tang YQ, Sun JY, Fu HY, Wan YQ, Qu XL, Xu ZY, Zheng SR (2019) Liquid phase catalytic hydrogenation reduction of Cr(VI) using highly stable and active Pd/CNT catalysts coated by N-doped carbon. Chemosphere 217:742–753

    Article  CAS  PubMed  Google Scholar 

  20. Chen HN, Cullen DA, Larese JZ (2015) Highly efficient selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over gold supported on zinc oxide materials. J Phys Chem C 119:28885–28894

    Article  CAS  Google Scholar 

  21. Yuan T, Liu DR, Pan Y, Pu XQ, **a YD, Wang JB, **ong W (2019) Magnetic anchored copt bimetallic nanoparticles as selective hydrogenation catalyst for cinnamaldehyde. Catal Lett 149:851–859

    Article  CAS  Google Scholar 

  22. Taylor MJ, Durndell LJ, Isaacs MA, Parlett CMA, Wilson K, Lee AF, Kyriakou G (2016) Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions. Appl Catal B-Environ 180:580–585

    Article  CAS  Google Scholar 

  23. Dohade MG, Dhepe PL (2017) Efficient hydrogenation of concentrated aqueous furfural solutions into furfuryl alcohol under ambient conditions in presence of PtCo bimetallic catalyst. Green Chem 19:1144–1154

    Article  CAS  Google Scholar 

  24. Zhang BY, Pei YC, Maligal-Ganesh RV, Li XL, Cruz A, Spurling RJ, Chen MD, Yu JQ, Wu X, Huang WY (2020) Influence of Sn on stability and selectivity of Pt–Sn@UiO-66-NH2 in furfural hydrogenation. Ind Eng Chem Res 59:17495–17501

    Article  CAS  Google Scholar 

  25. Yang QH, Xu Q, Jiang HL (2017) Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev 46:4774–4808

    Article  CAS  PubMed  Google Scholar 

  26. Shen K, Chen XD, Chen JY, Li YW (2016) Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal 6:5887–5903

    Article  CAS  Google Scholar 

  27. An B, Li Z, Song Y, Zhang JZ, Zeng LZ, Wang C, Lin WB (2019) Cooperative copper centres in a metal–organic framework for selective conversion of CO2 to ethanol. Nat Catal 2:709–717

    Article  CAS  Google Scholar 

  28. Zhang WN, Lu G, Cui CL, Liu YY, Li SZ, Yan WJ, **ng C, Chi YR, Yang YH, Huo FW (2014) A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Adv Mater 26:4056–4060

    Article  CAS  PubMed  Google Scholar 

  29. Wang Q, Astruc D (2020) State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem Rev 120:1438–1511

    Article  CAS  PubMed  Google Scholar 

  30. Lan YQ, Jiang HL, Li SL, Xu Q (2011) Mesoporous metal-organic frameworks with size-tunable cages: selective CO2 uptake, encapsulation of Ln3+ cations for luminescence, and column-chromatographic dye separation. Adv Mater 23:5015–5020

    Article  CAS  PubMed  Google Scholar 

  31. Gu XJ, Lu ZH, Jiang HL, Akita T, Xu Q (2011) Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J Am Chem Soc 133:11822–11825

    Article  CAS  PubMed  Google Scholar 

  32. Jiang HL, Liu B, Akita T, Haruta M, Sakurai H, Xu Q (2009) Au@ZIF-8: co oxidation over gold nanoparticles deposited to metal−organic framework. J Am Chem Soc 131:11302–11303

    Article  CAS  PubMed  Google Scholar 

  33. Chen YZ, Zhang R, Jiao L, Jiang HL (2018) Metal–organic framework-derived porous materials for catalysis. Coordin Chem Rev 362:1–23

    Article  CAS  Google Scholar 

  34. Yang QH, Xu Q, Yu SH, Jiang HL (2016) Pd Nanocubes@ZIF-8: integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew Chem Int Ed 55:3685–3689

    Article  CAS  Google Scholar 

  35. Guo ZY, **ao CX, Maligal-Ganesh RV, Zhou L, Goh TW, Li XL, Tesfagaber D, Thiel A, Huang WY (2014) Pt nanoclusters confined within metal-organic framework cavities for chemoselective cinnamaldehyde hydrogenation. ACS Catal 4:1340–1348

    Article  CAS  Google Scholar 

  36. Li X, Deng Q, Zhang LK, Wang J, Wang R, Zeng ZL, Deng SG (2019) Highly efficient hydrogenative ring-rearrangement of furanic aldehydes to cyclopentanone compounds catalyzed by noble metals/MIL-MOFs. Appl Catal A-Gen 575:152–158

    Article  CAS  Google Scholar 

  37. Qu HN, Liu BY, Gao GH, Ma YM, Zhou YM, Zhou H, Li L, Li YH, Liu SJ (2019) Metal-organic framework containing Brønsted acidity and Lewis acidity for efficient conversion glucose to levulinic acid. Fuel Process Technol 193:1–6

    Article  CAS  Google Scholar 

  38. Huo SH, Yan XP (2012) Metal–organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. J Mater Chem 22:7449

    Article  CAS  Google Scholar 

  39. Chen X, Zhang YS, Kong XY, Guo Z, Xu WY, Fang Z, Wang SH, Liu LZ, Liu YX, Zhang JL (2020) Controlling crystal growth of MIL-100(Fe) on Ag nanowire surface for optimizing catalytic performance. RSC Adv 10:25260–25265

    Article  CAS  Google Scholar 

  40. Kholdeeva OA, Skobelev IY, Ivanchikova ID, Kovalenko KA, Fedin VP, Sorokin AB (2014) Hydrocarbon oxidation over Fe- and Cr-containing metal-organic frameworks MIL-100 and MIL-101–a comparative study. Catal Today 238:54–61

    Article  CAS  Google Scholar 

  41. Liu YX, Wang S, Lv P, Zhang YS, Zhao YH, Kong XY, Zhang JL, Guo ZR, Xu WY, Chen X (2020) Inserting Pt nanoparticles at the designated location inside metal-organic frameworks for promoted catalytic performance. Inorg Chem 59:6060–6066

    Article  CAS  PubMed  Google Scholar 

  42. Peng JJ, **an SK, **ao J, Huang Y, **a QB, Wang HH, Li Z (2015) A supported Cu(I)@MIL-100(Fe) adsorbent with high CO adsorption capacity and CO/N2 selectivity. Chem Eng J 270:282–289

    Article  CAS  Google Scholar 

  43. Dhakshinamoorthy A, Alvaro M, Garcia H (2012) Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide. J Catal 289:259–265

    Article  CAS  Google Scholar 

  44. Zhang TZ, Lu Y, Li YG, Zhang ZM, Chen WL, Fu H, Wang EB (2012) Metal–organic frameworks constructed from three kinds of new Fe-containing secondary building units. Inorg Chim Acta 384:219–224

    Article  CAS  Google Scholar 

  45. Song GQ, Wang ZQ, Wang L, Li GR, Huang MJ, Yin FX (2014) Preparation of MOF(Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte. Chinese J Catal 35:185–195

    Article  CAS  Google Scholar 

  46. Woo K, Lee HJ, Ahn JP, Park YS (2003) Sol-Gel mediated synthesis of Fe2O3 Nanorods. Adv Mater 15:1761–1764

    Article  CAS  Google Scholar 

  47. Zhao XM, ** Y, Zhang FM, Zhong YJ, Zhu WD (2014) Catalytic hydrogenation of 2,3,5-trimethylbenzoquinone over Pd nanoparticles confined in the cages of MIL-101(Cr). Chem Eng J 239:33–41

    Article  CAS  Google Scholar 

  48. Yang J, Zheng C, **ong PX, Li YF, Wei MD (2014) Zn-doped Ni-MOF material with a high supercapacitive performance. J Mater Chem A 2:19005–19010

    Article  CAS  Google Scholar 

  49. Yuan S, Feng L, Wang KC, Pang JD, Bosch M, Lollar C, Sun YJ, Qin JS, Yang XY, Zhang P, Wang Q, Zou LF, Zhang YM, Zhang LL, Fang Y, Li JL, Zhou HC (2018) Stable metal-organic frameworks: design, synthesis, and applications. Adv Mater 30:1704303

    Article  Google Scholar 

  50. Du M, Li LN, Li MX, Si R (2016) Adsorption mechanism on metal organic frameworks of Cu-BTC, Fe-BTC and ZIF-8 for CO2 capture investigated by X-ray absorption fine structure. RSC Adv 6:62705–62716

    Article  CAS  Google Scholar 

  51. Torres N, Galicia J, Plasencia Y, Cano A, Echevarría F, Desdin-Garcia LF, Reguera E (2018) Implications of structural differences between Cu-BTC and Fe-BTC on their hydrogen storage capacity. Colloid Surface A 549:138–146

    Article  CAS  Google Scholar 

  52. Binh NT, Tien DM, Giang LTK, Khuyen HT, Huong NT, Huong TT, Lam TD (2014) Study on preparation and characterization of MOF based lanthanide doped luminescent coordination polymers. Mater Chem Phys 143:946–951

    Article  Google Scholar 

  53. Song XK, Oh M, Lah MS (2013) Hybrid bimetallic metal-organic frameworks: modulation of the framework stability and ultralarge CO2 uptake capacity. Inorg Chem 52:10869–10876

    Article  CAS  PubMed  Google Scholar 

  54. Goh TW, Tsung CK, Huang WY (2019) Spectroscopy Identification of the bimetallic surface of metal-organic framework-confined Pt–Sn Nanoclusters with enhanced chemoselectivity in furfural hydrogenation. ACS Appl Mater Interfaces 11:23254–23260

    Article  CAS  PubMed  Google Scholar 

  55. Tong YD, Xue GX, Wang H, Liu M, Wang J, Hao CL, Zhang XF, Wang DW, Shi XH, Liu W, Li GD, Tang ZY (2018) Interfacial coupling between noble metal nanoparticles and metal–organic frameworks for enhanced catalytic activity. Nanoscale 10:16425–16430

    Article  CAS  PubMed  Google Scholar 

  56. Chen T, Wang QF, Lyu JF, Bai P, Guo XH (2020) Boron removal and reclamation by magnetic magnetite (Fe3O4) nanoparticle: an adsorption and isotopic separation study. Sep Purif Technol 231:115930

    Article  CAS  Google Scholar 

  57. Maccario M, Croguennec L, Wattiaux A, Suard E, Lecras F, Delmas C (2008) C-containing LiFePO4 materials — Part I: mechano-chemical synthesis and structural characterization. Solid State Ionics 179:2020–2026

    Article  CAS  Google Scholar 

  58. Bhogeswararao S, Srinivas D (2012) Intramolecular selective hydrogenation of cinnamaldehyde over CeO2–ZrO2 supported Pt catalysts. J Catal 285:31–40

    Article  CAS  Google Scholar 

  59. Zhang WL, Shi WX, Ji WL, Wu HB, Gu ZD, Wang P, Li XH, Qin PS, Zhang J, Fan Y, Wu TY, Fu Y, Zhang WN, Huo FW (2020) Microenvironment of MOF channel coordination with Pt NPs for selective hydrogenation of unsaturated aldehydes. ACS Catal 10:5805–5813

    Article  CAS  Google Scholar 

  60. Plomp AJ, Vuori H, Krause AOI, de Jong KP, Bitter JH (2008) Particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde. Appl Catal A-Gen 351:9–15

    Article  CAS  Google Scholar 

  61. O’Driscoll Á, Leahy JJ, Curtin T (2017) The influence of metal selection on catalyst activity for the liquid phase hydrogenation of furfural to furfuryl alcohol. Catal Today 279:194–201

    Article  Google Scholar 

  62. Li J, Zahid M, Sun W, Tian XQ, Zhu YJ (2020) Synthesis of Pt supported on mesoporous g-C3N4 modified by ammonium chloride and its efficiently selective hydrogenation of furfural to furfuryl alcohol. Appl Surf Sci 528:146983

    Article  CAS  Google Scholar 

  63. Liu X, Jia SF, Yang M, Tang YT, Wen YW, Chu SQ, Wang JB, Shan B, Chen R (2020) Activation of subnanometric Pt on Cu-modified CeO2 via redox-coupled atomic layer deposition for CO oxidation. Nat Commun 11:4240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bhogeswararao S, Srinivas D (2015) Catalytic conversion of furfural to industrial chemicals over supported Pt and Pd catalysts. J Catal 327:65–77

    Article  CAS  Google Scholar 

Download references

Acknowledgements

YZ acknowledges the Natural Science Foundation of Heilongjiang Province of China (LH2020B021)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujun Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1573 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Luo, L., Li, J. et al. Highly Efficient Hydrogenation of Furfural to Furfuryl Alcohol Catalyzed by Pt Supported on Bi-Metallic MIL-100 (Fe, Mn/Co) MOFs Derivates Prepared by Hydrothermal Polyol Reduction Method. Catal Lett 152, 570–584 (2022). https://doi.org/10.1007/s10562-021-03656-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03656-y

Keywords

Navigation