Log in

Characterization and Performance of Ca-Substituted La1−xCaxCoO3−δ Perovskite for Efficient Catalytic Oxidation of Toluene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Perovskite oxides with ABO3 structure are promising heterogeneous catalysts. This work intends to modify the physicochemical properties and catalytic behaviors of perovskite-type oxides by A-site substitution. La1−xCaxCoO3−δ perovskite catalysts with various x = 0, 0.1, 0.3, 0.5 and 0.7 were prepared and the toluene oxidation performance was investigated. The results show that the calcium substitution increased the surface area, pore volume of the perovskite oxides and the crystal structure was transformed from rhombohedral to cubic symmetry after calcium substitution. Besides, it also changed the surface element composition, low-temperature reducibility and surface oxygen species amounts. 50% of calcium substitution in A-site (La0.5Ca0.5CoO3−δ) was thought to be the optimal content due to the best comprehensive physicochemical properties. The toluene oxidation test verified that the La0.5Ca0.5CoO3−δ presented the best catalytic performance with T50% = 183 °C and T90% = 218 °C. The catalytic process was related closely with the rapid transformation of Co2+/Co3+ and the consumption and regeneration of surface adsorbed oxygen. A mechanism of toluene oxidation over La1−xCaxCoO3−δ perovskite was proposed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ordóñez S, Bello L, Sastre H, Rosal R, Díez FV (2002) Kinetics of the deep oxidation of benzene, toluene, n-hexane and their binary mixtures over a platinum on γ-alumina catalyst. Appl Catal B Environ 38(2):139–149

    Article  Google Scholar 

  2. Tuet WY, Chen Y, Xu L, Fok S, Gao D, Weber RJ et al (2017) Chemical oxidative potential of secondary organic aerosol (SOA) generated from the photooxidation of biogenic and anthropogenic volatile organic compounds. Atmos Chem Phys 17(2):839–853

    Article  CAS  Google Scholar 

  3. Kim SC, Shim WG (2010) Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl Catal B 98(3–4):180–185

    Article  CAS  Google Scholar 

  4. Li WB, Wang JX, Gong H (2009) Catalytic combustion of VOCs on non-noble metal catalysts. Catal Today 148(1–2):81–87

    Article  CAS  Google Scholar 

  5. Shah RK, Thonon B, Benforado DM (2000) Opportunities for heat exchanger applications in environmental systems. Appl Therm Eng 20(7):631–650

    Article  CAS  Google Scholar 

  6. Dwivedi P, Gaur V, Sharma A, Verma N (2004) Comparative study of removal of volatile organic compounds by cryogenic condensation and adsorption by activated carbon fiber. Sep Purif Technol 39(1):23–37

    Article  CAS  Google Scholar 

  7. Santos S, Jones K, Abdul R, Boswell J, Paca J (2007) Treatment of wet process hardboard plant VOC emissions by a pilot scale biological system. Biochem Eng J 37(3):261–270

    Article  CAS  Google Scholar 

  8. Son HK, Sivakumar S, Rood MJ, Kim BJ (2016) Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth. J Hazard Mater 301:27–34

    Article  CAS  PubMed  Google Scholar 

  9. Zhang CH, Wang C, Huang H, Zeng K, Wang Z, Jia HP et al (2019) Insights into the size and structural effects of zeolitic supports on gaseous toluene oxidation over MnOx/HZSM-5 catalysts. Appl Surf Sci 486:108–120

    Article  CAS  Google Scholar 

  10. He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao ZP (2019) Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem Rev 119(7):4471–4568

    Article  CAS  PubMed  Google Scholar 

  11. Zhang XD, Lv XT, Bi FK, Lu G, Wang YX (2020) Highly efficient Mn2O3 catalysts derived from Mn-MOFs for toluene oxidation: the influence of MOFs precursors. Mol Catal 482:110701

    Article  CAS  Google Scholar 

  12. Liotta LF, Ousmane M, Di Carlo G, Pantaleo G, Deganello G, Boreave A et al (2009) Catalytic removal of toluene over Co3O4–CeO2 mixed oxide catalysts: comparison with Pt/Al2O3. Catal Lett 127(3):270–276

    Article  CAS  Google Scholar 

  13. Ma CY, Mu Z, Li JJ, ** YG, Cheng J, Lu GQ et al (2010) Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. J Am Chem Soc 132(8):2608–2613

    Article  CAS  PubMed  Google Scholar 

  14. Kim KJ, Ahn HG (2009) Complete oxidation of toluene over bimetallic Pt–Au catalysts supported on ZnO/Al2O3. Appl Catal B 91(1–2):308–318

    Article  CAS  Google Scholar 

  15. He C, Li JJ, Li P, Cheng J, Hao ZP, Xu ZP (2010) Comprehensive investigation of Pd/ZSM-5/MCM-48 composite catalysts with enhanced activity and stability for benzene oxidation. Appl Catal B 96(3–4):466–475

    Article  CAS  Google Scholar 

  16. Paulis M, Gandía LM, Gil A, Sambeth J, Odriozola JA, Montes M (2000) Influence of the surface adsorption–desorption processes on the ignition curves of volatile organic compounds (VOCs) complete oxidation over supported catalysts. Appl Catal B Environ 26(1):37–46

    Article  CAS  Google Scholar 

  17. Chen KD, **e SB, Bell AT, Iglesia E (2001) Structure and properties of oxidative dehydrogenation catalysts based on MoO3/Al2O3. J Catal 198(2):232–242

    Article  CAS  Google Scholar 

  18. Goldschmidt VM, Viedenk-Akad (1926) KI1: Mat-Naturvidensk KI.1, 5–21

  19. Pereñíguez R, Hueso JL, Gaillard F, Holgado JP, Caballero A (2012) Study of oxygen reactivity in La1−xSrxCoO3−δ perovskites for total oxidation of toluene. Catal Lett 142(4):408–416

    Article  CAS  Google Scholar 

  20. Gao Z, Wang R (2010) Catalytic activity for methane combustion of the perovskite-type La1−xSrxCoO3−δ oxide prepared by the urea decomposition method. Appl Catal B 98(3):147–153

    Article  CAS  Google Scholar 

  21. Rida K, Benabbas A, Bouremmad F, Peña MA, Martínez-Arias A (2006) Surface properties and catalytic performance of La1−xSrxCrO3 perovskite-type oxides for CO and C3H6 combustion. Catal Commun 7(12):963–968

    Article  CAS  Google Scholar 

  22. Merino N, Barbero B, Grange P, Cadus L (2005) La1-xCaxCoO3 perovskite-type oxides: preparation, characterisation, stability, and catalytic potentiality for the total oxidation of propane. J Catal 231(1):232–244

    Article  CAS  Google Scholar 

  23. Ran R, Wu XD, Weng D, Fan J (2013) Oxygen storage capacity and structural properties of Ni-doped LaMnO3 perovskites. J Alloys Compd 577:288–294

    Article  CAS  Google Scholar 

  24. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32(5):751–767

    Article  Google Scholar 

  25. González-Prior J, López-Fonseca R, Gutiérrez-Ortiz JI, de Rivas B (2016) Oxidation of 1,2-dichloroethane over nanocube-shaped Co3O4 catalysts. Appl Catal B 199:384–393

    Article  CAS  Google Scholar 

  26. Yan H, Blanford CF, Holland BT, Smyrl WH, Stein A (2000) General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion. Chem Mater 12(4):1134–1141

    Article  CAS  Google Scholar 

  27. Wang XB, Zhang XF, Wang Y, Liu HO, Qiu JS, Wang JQ et al (2011) Investigating the role of zeolite nanocrystal seeds in the synthesis of mesoporous catalysts with zeolite wall structure. Chem Mater 23(20):4469–4479

    Article  CAS  Google Scholar 

  28. Ji KM, Dai HX, Deng JG, Jiang HY, Zhang L, Zhang H et al (2013) Catalytic removal of toluene over three-dimensionally ordered macroporous Eu1–xSrxFeO3. Chem Eng J 214:262–271

    Article  CAS  Google Scholar 

  29. Giraudon JM, Elhachimi A, Wyrwalski F, Siffert S, Aboukaïs A, Lamonier JF et al (2007) Studies of the activation process over Pd perovskite-type oxides used for catalytic oxidation of toluene. Appl Catal B 75(3):157–166

    Article  CAS  Google Scholar 

  30. Ding RR, Li C, Wang LJ, Hu RS (2013) Biphasic intergrowth effects of La2MnNiO6–MgO composite oxide for methane catalytic combustion. Appl Catal A 464–465:261–268

    Article  CAS  Google Scholar 

  31. Machkova M, Brashkova N, Ivanov P, Carda JB, Kozhukharov V (1997) Surface behavior of Sr-doped lanthanide perovskites. Appl Surf Sci 119(1):127–136

    Article  CAS  Google Scholar 

  32. Cai T, Huang H, Deng W, Dai QG, Liu W, Wang XY (2015) Catalytic combustion of 1,2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts. Appl Catal B 166–167:393–405

    Article  CAS  Google Scholar 

  33. Zhu X, Zhang S, Yang Y, Zheng C, Zhou J, Gao X et al (2017) Enhanced performance for plasma-catalytic oxidation of ethyl acetate over La1-xCexCoO3+δ catalysts. Appl Catal B 213:97–105

    Article  CAS  Google Scholar 

  34. Liu CX, Liu Q, Bai L, Dong AQ, Liu GB, Wen SH (2013) Structure and catalytic performances of nanocrystalline Co3O4 catalysts for low temperature CO oxidation prepared by dry and wet synthetic routes. J Mol Catal A Chem 370:1–6

    Article  CAS  Google Scholar 

  35. Oemar U, Ang PS, Hidajat K, Kawi S (2013) Promotional effect of Fe on perovskite LaNixFe1−xO3 catalyst for hydrogen production via steam reforming of toluene. Int J Hydrog Energy 38(14):5525–5534

    Article  CAS  Google Scholar 

  36. Machocki A, Ioannides T, Stasinska B, Gac W, Avgouropoulos G, Delimaris D et al (2004) Manganese–lanthanum oxides modified with silver for the catalytic combustion of methane. J Catal 227(2):282–296

    Article  CAS  Google Scholar 

  37. Liu YX, Dai HX, Deng JG, Li XW, Wang Y, Arandiyan H et al (2013) Au/3DOM La0.6Sr0.4MnO3: highly active nanocatalysts for the oxidation of carbon monoxide and toluene. J Catal 305:146–153

    Article  CAS  Google Scholar 

  38. Tian MJ, He C, Yu YK, Pan H, Smith L, Jiang ZY et al (2018) Catalytic oxidation of 1,2-dichloroethane over three-dimensional ordered meso-macroporous Co3O4/La0.7Sr0.3Fe0.5Co0.5O3: destruction route and mechanism. Appl Catal A Gen 553:1–14

    Article  CAS  Google Scholar 

  39. Lago R, Bini G, Peña MA, Fierro JLG (1997) Partial oxidation of methane to synthesis gas using LnCoO3 perovskites as catalyst precursors. J Catal 167(1):198–209

    Article  CAS  Google Scholar 

  40. Royer S, Bérubé F, Kaliaguine S (2005) Effect of the synthesis conditions on the redox and catalytic properties in oxidation reactions of LaCo1−xFexO3. Appl Catal A 282(1):273–284

    CAS  Google Scholar 

  41. Bousselham E, Serge K, Houshang A (2006) Well dispersed Co0 by reduction of LaCoO3 perovskite. Int J Chem React Eng 4, Article A29, 1–4

  42. Huang H, Gu YF, Zhao J, Wang XY (2015) Catalytic combustion of chlorobenzene over VOx/CeO2 catalysts. J Catal 326:54–68

    Article  CAS  Google Scholar 

  43. Zhao Z, Yang XG, Wu Y (1996) Comparative study of Nickel-based perovskite-like mixed oxide catalysts for direct decomposition of NO. Appl Catal B 8(3):281–297

    Article  CAS  Google Scholar 

  44. Zhang CH, Wang C, Hua WC, Guo YL, Lu GZ, Gil S et al (2016) Relationship between catalytic deactivation and physicochemical properties of LaMnO3 perovskite catalyst during catalytic oxidation of vinyl chloride. Appl Catal B 186:173–183

    Article  CAS  Google Scholar 

  45. Kaliaguine S, Szabo V, Van Neste A, Gallot JE, Bassir M, Muzychuk R (2001) Perovskite-type oxides synthesized by reactive grinding. J Metastable Nanocrystalline Mater 11:39–56

    Article  Google Scholar 

  46. Royer S, Duprez D, Can F, Courtois X, Batiot-Dupeyrat C, Laassiri S et al (2014) Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chem Rev 114(20):10292–10368

    Article  CAS  PubMed  Google Scholar 

  47. Zhang HM, Shimizu Y, Teraoka Y, Miura N, Yamazoe N (1990) Oxygen sorption and catalytic properties of La1−xSrxCo1−yFeyO3 perovskite-type oxides. J Catal 121(2):432–440

    Article  CAS  Google Scholar 

  48. Deng JG, Zhang L, Dai HX, He H, Au CT (2008) Strontium-doped lanthanum cobaltite and manganite: highly active catalysts for toluene complete oxidation. Ind Eng Chem Res 47(21):8175–8183

    Article  CAS  Google Scholar 

  49. Jiang Y, **e S, Yang H, Deng J, Liu Y, Dai H (2017) Mn3O4-Au/3DOM La0.6Sr0.4CoO3: high-performance catalysts for toluene oxidation. Catal Today 281:437–446

    Article  CAS  Google Scholar 

  50. Dong C, Qu ZP, Qin Y, Fu Q, Sun HC, Duan XX (2019) Revealing the highly catalytic performance of spinel CoMn2O4 for toluene oxidation: involvement and replenishment of oxygen species using in situ designed-TP techniques. ACS Catal 9(8):6698–6710

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (Grant No. 2019-KF-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peitao Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Yang, H., Zhang, J. et al. Characterization and Performance of Ca-Substituted La1−xCaxCoO3−δ Perovskite for Efficient Catalytic Oxidation of Toluene. Catal Lett 151, 3323–3333 (2021). https://doi.org/10.1007/s10562-021-03566-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03566-z

Keywords

Navigation