Log in

CrOx Anchored on the Black-TiO2 Surface via Organic Carboxylic Acid Ligand and Its Catalysis in Oxidation of NO

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

CrOx/black-TiO2 catalysts were prepared by ligand-assisted (citric acid, oxalic acid and ethylenediaminetetraacetic acid) impregnation method. These catalysts were characterized in detail by means of X-ray diffraction, Raman, BET, X-ray photoelectron spectroscopy, H2 and O2(NO) temperature programmed reduction or desorption and in-suit DFTIR spectra. The results indicated that ligands assistance was beneficial for CrOx interacted with oxygen vacancies and O–Ti–O structures. Among all the catalysts, CrOx/black-TiO2/CA (modified by citric acid) revealed excellent catalytic activity and stability for NO oxidation in the temperature range of 200–450 °C. The characterization results exhibited that the interaction existed between CrOx and oxygen vacancies resulting in more Cr6+. Moreover, the strong interaction between CrOx and O–Ti–O was attributed to the modification of carboxylic acid, which increased the content of Cr3+ and chemical adsorption oxygen. High content of chemical adsorption oxygen promoted the adsorption ability of O2, and Cr6+ enhanced the adsorption capacity of NO. Hence, chemical adsorption oxygen and Cr6+ synergistically promoted the NO oxidation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ali S, Chen L, Li Z, Zhang T, Li R, Leng X, Yuan F, Niu X, Zhu Y (2018) CuxNb1.1-x (x= 0.45, 0.35, 0.25, 0.15) bimetal oxides catalysts for the low temperature selective catalytic reduction of NO with NH3. Appl Catal B 236:25–35

    CAS  Google Scholar 

  2. Wang D, Luo J, Yang Q, Yan J, Zhang K, Zhang W, Peng Y, Li J, Crittenden J (2019) Deactivation mechanism of multipoisons in cement furnace flue gas on selective catalytic reduction catalysts. Environ Sci Technol 53:6937–6944

    CAS  PubMed  Google Scholar 

  3. Wang D, Chen J, Peng Y, Si W, Li X (2018) Dechlorination of chlorobenzene on vanadium-based catalysts for low-temperature SCR. Chem Commun 10:1039

    Google Scholar 

  4. France LJ, Yang Q, Li W, Chen Z, Guang J, Guo D, Wang L, Li X (2017) Ceria modified FeMnOx—enhanced performance and sulphur resistance for low-temperature SCR of NOx. Appl Catal B 206:203–215

    CAS  Google Scholar 

  5. Zhang Z-S, Chen B-B, Wang X-K, Xu L, Au C, Shi C, Crocker M (2015) NOx storage and reduction properties of model manganese-based lean NOx trap catalysts. Appl Catal B 165:232–244

    CAS  Google Scholar 

  6. Kang W, Choi B, Jung S, Park S (2018) PM and NOx reduction characteristics of LNT/DPF plus SCR/DPF hybrid system. Energy 143:439–447

    CAS  Google Scholar 

  7. Zhang T, Li H, Yang Z, Cao F, Li L, Chen H, Liu H, **ong K, Wu J, Hong Z (2019) Electrospun YMn2O5 nanofibers: a highly catalytic activity for NO oxidation. Appl Catal B 247:133–141

    CAS  Google Scholar 

  8. Shao J, Yang Y, Whiddon R, Wang Z, Lin F, He Y, Kumar S, Cen K (2019) Investigation of NO removal with ozone deep oxidation in Na2CO3 solution. Energy Fuel 33:4454–4461

    CAS  Google Scholar 

  9. Arnarson L, Falsig H, Rasmussen SB, Lauritsen JV, Moses PG (2017) A complete reaction mechanism for standard and fast selective catalytic reduction of nitrogen oxides on low coverage VOx/TiO2 (0 0 1) catalysts. J Catal 346:188–197

    CAS  Google Scholar 

  10. Li S, Lin Y, Wang D, Zhang C, Li X (2020) Polyhedral cobalt oxide supported Pt nanoparticles with enhanced performance for toluene catalytic oxidation. Chemosphere 263:127870

    PubMed  Google Scholar 

  11. Lin Y, Sun J, Li S, Wang D, Zhang C, Wang Z, Li X (2020) An efficient Pt/CeyCoOx composite metal oxide for catalytic oxidation of toluene. Catal Lett 150:3206–3213

    CAS  Google Scholar 

  12. Wang Z, Sun Q, Wang D, Hong Z, Qu Z, Li X (2018) Hollow ZSM-5 zeolite encapsulated Ag nanoparticles for SO2-resistant selective catalytic oxidation of ammonia to nitrogen. Sep Purif Technol 209:1016–1026

    Google Scholar 

  13. Auvray X, Olsson L (2015) Stability and activity of Pd-Pt- and Pd–Pt catalysts supported on alumina for NO oxidation. Appl Catal B 168-169:342–352

    CAS  Google Scholar 

  14. Li L, Qu L, Cheng J, Li J, Hao Z (2009) Oxidation of nitric oxide to nitrogen dioxide over Ru catalysts. Appl Catal B 88:224–231

    CAS  Google Scholar 

  15. Kang M, Yeon TH, Park ED, Yie JE, Kim JM (2006) Novel MnOx catalysts for NO reduction at low temperature with ammonia. Catal Lett 106:77–80

    CAS  Google Scholar 

  16. Zhang R, Villanueva A, Alamdari H, Kaliaguine S (2006) Cu- and Pd-substituted nanoscale Fe-based perovskites for selective catalytic reduction of NO by propene. J Catal 237:368–380

    CAS  Google Scholar 

  17. Lietti L, Nova I, Ramis G, Dall’Acqua L, Busca G, Giamello E, Forzatti P, Bregani F (1999) Characterization and reactivity of V2O5–MoO3/TiO2 De-NOx SCR catalysts. J Catal 187:419–435

    CAS  Google Scholar 

  18. Wang A, Guo Y, Gao F, Peden CHF (2017) Ambient-temperature NO oxidation over amorphous CrOx-ZrO2 mixed oxide catalysts: significant promoting effect of ZrO2. Appl Catal B 202:706–714

    CAS  Google Scholar 

  19. Zhou M, Wang Z, Sun Q, Wang J, Zhang C, Chen D, Li X (2019) High-performance Ag–Cu nanoalloy catalyst for the selective catalytic oxidation of ammonia. ACS Appl Mater Interfaces 11:46875–46885

    CAS  PubMed  Google Scholar 

  20. Cai W, Zhao Y, Chen M, Jiang X, Wang H, Ou M, Wan S, Zhong Q (2018) The formation of 3D spherical Cr-Ce mixed oxides with roughness surface and their enhanced low-temperature NO oxidation. Chem Eng J 333:414–422

    CAS  Google Scholar 

  21. Zhong L, Yu Y, Cai W, Geng XX, Zhong Q (2015) Structure-activity relationship of Cr/Ti-PILC catalysts using a pre-modification method for NO oxidation and their surface species study. Phys Chem Chem Phys 17:15036–15045

    CAS  PubMed  Google Scholar 

  22. Wang X, Chen H-Y, Sachtler WMH (2001) Mechanism of the selective reduction of NOx over Co/MFI: comparison with Fe/MFI. J Catal 197:281–291

    CAS  Google Scholar 

  23. Cai W, Zhong Q, Zhao W (2014) Solvent effects on formation of Cr-doped Ce0.2Zr0.8O2 synthesized with cinnamic acid and their catalysis in oxidation of NO. Chem Eng J 246:328–336

    CAS  Google Scholar 

  24. Cai W, Zhong Q, Zhao W, Bu Y (2014) Focus on the modified CexZr1−xO2 with the rigid benzene-muti-carboxylate ligands and its catalysis in oxidation of NO. Appl Catal B 158:258–268

    Google Scholar 

  25. Cai W, Zhong Q, Zhang S, Zhao W (2014) Fractional-hydrolysis-driven formation of nonuniform dopant concentration catalyst nanoparticles of Cr/CexZr1−xO2 and their catalysis in oxidation of NO. Chem Eng J 236:223–232

    CAS  Google Scholar 

  26. Zhong L, Cai W, Yu Y, Zhong Q (2015) Insights into synergistic effect of chromium oxides and ceria supported on Ti-PILC for NO oxidation and their surface species study. Appl Surf Sci 325:52–63

    CAS  Google Scholar 

  27. An X, Tang Q, Lan H, Liu H, Qu J (2019) Polyoxometalates/TiO2 Fenton-like photocatalysts with rearranged oxygen vacancies for enhanced synergetic degradation. Appl Catal B 244:407–413

    CAS  Google Scholar 

  28. Meng F, Zhang S, Li X, Zeng Y, Zhong Q (2019) CrOx assembled at the oxygen vacancies on black-TiO2 for NO oxidation. Mol Catal 473:110393

    CAS  Google Scholar 

  29. Yan J, Qiu W, Song L, Chen Y, Su Y, Bai G, Zhang G, He H (2017) Ligand-assisted mechanochemical synthesis of ceria-based catalysts for the selective catalytic reduction of NO by NH3. Chem Commun 53:1321–1324

    CAS  Google Scholar 

  30. Rezaee M, Mousavi Khoie SM, Liu KH (2011) The role of brookite in mechanical activation of anatase-to-rutile transformation of nanocrystalline TiO2: an XRD and Raman spectroscopy investigation. CrystEngCommun 13:5055–5061

    CAS  Google Scholar 

  31. Tian F, Zhang YP, Zhang J, Pan CX (2012) Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J Phys Chem C 116:7515–7519

    CAS  Google Scholar 

  32. Sanjeev K (2010) Gupta, Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence. J Raman Spectrosc 41:350–355

    Google Scholar 

  33. Choudhury B, Choudhury A (2012) Ce3+ and oxygen vacancy mediated tuning of structural and optical properties of CeO2 nanoparticles. Mater Chem Phys 131:666–671

    CAS  Google Scholar 

  34. Zhu Q, Peng Y, Lin L, Fan CM, Gao GQ, Wang RX, Xu AW (2014) Stable blue TiO2x nanoparticles for efficient visible light photocatalysts. J Mater Chem A 2:4429–4437

    CAS  Google Scholar 

  35. Wang J, Zhang P, Li X, Zhu J, Li H (2013) Synchronical pollutant degradation and H2 production on a Ti3+-doped TiO2 visible photocatalyst with dominant (0 0 1) facets. Appl Catal B 134-135:198–204

    CAS  Google Scholar 

  36. Chen J, Zhang X, Arandiyan H, Peng Y, Chang H, Li J (2013) Low temperature complete combustion of methane over cobalt chromium oxides catalysts. Catal Today 201:12–18

    CAS  Google Scholar 

  37. Wang Y, Yang P, Liu G, Xu L, Jia M, Zhang W, Jiang D (2008) Stability and deactivation of spinel-type cobalt chromite catalysts for ortho-selective alkylation of phenol with methanol. Catal Commun 9:2044–2047

    CAS  Google Scholar 

  38. Ma RH, Hu PJ, ** LY, Wang YJ, Lu JQ, Luo MF (2011) Characterization of CrOx/Al2O3 catalysts for dichloromethane oxidation. Catal Today 175:598–602

    CAS  Google Scholar 

  39. Kijlstra WS, Brands DS, Poels EK, Bliek A (1997) Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3. J Catal 171:208–218

    CAS  Google Scholar 

  40. Jiang BQ, Wu ZB, Liu Y, Lee SC, Ho WK (2010) DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe−Mn/TiO2. J Phys Chem C 114:4961–4965

    CAS  Google Scholar 

  41. Sazama P, Čapek L, Drobná H, Sobalík Z, Dědeček J, Arve K, Wichterlová B (2005) Enhancement of decane-SCR-NOx over Ag/alumina by hydrogen. Reaction kinetics and in situ FTIR and UV–vis study. J Catal 232:302–317

    CAS  Google Scholar 

  42. Kameoka S, Ukisu Y, Miyadera T (2000) Selective catalytic reduction of NOx with CH3OH, C2H5OH and C3H6 in the presence of O2- over Ag/Al2O3 catalyst: role of surface nitrate species. Phys Chem Chem Phys 2:367–372

    CAS  Google Scholar 

  43. Rodriguez JA, Jirsak T, Dvorak J, Sambasivan S, Fischer D (2000) Reaction of NO2 with Zn and ZnO: photoemission, XANES, and density functional studies on the formation of NO3. J Phys Chem B 104:319–328

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Key Project of Jiangsu Province Programs for Research and Development (BE2019115), Jiangsu Province Scientific and Technological Achievements into a Special Fund Project (BA2017095), the Fundamental Research Funds for the Central Universities (30919011220), Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, A Project by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shule Zhang or Qin Zhong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1243 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, F., Zhang, M., Zhou, F. et al. CrOx Anchored on the Black-TiO2 Surface via Organic Carboxylic Acid Ligand and Its Catalysis in Oxidation of NO. Catal Lett 151, 1755–1765 (2021). https://doi.org/10.1007/s10562-020-03434-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03434-2

Keywords

Navigation