Log in

Effect of Gallium Additions on Reduction, Carburization and Fischer–Tropsch Activity of Iron Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Undoped and gallium-doped iron oxide catalysts (100Fe, 100Fe:2Ga, and 100Fe:5Ga) were prepared by following a continuous co-precipitation technique using ammonium hydroxide as precipitant. The catalysts were characterized by BET surface area, X-ray diffraction, H2-temperature programmed reduction, 57Fe Mössbauer spectroscopy, and temperature programmed decarburization techniques. The addition of gallium affects both reduction as well as carburization of iron oxide. The CO conversion decreases with an increase of gallium content relative to iron. The gallium-doped iron catalyst (100Fe:2Ga) exhibits initially a lower CO conversion after H2 activation than an undoped iron catalyst; however, the activity of the doped catalyst kept increasing with time. A strong interaction between iron oxide and gallium could explain the suppressed formation of χ-Fe5C2 and metallic iron during the carburization and reduction of iron oxide, respectively. The relative percentage of iron in χ-Fe5C2 was found to correlate with the initial rates of FT and WGS activity indicating that iron carbide is the main active component for both FT and WGS reactions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dry ME (2002) Catal Today 71:227

    Article  CAS  Google Scholar 

  2. Davis BH (2001) Fuel Process Technol 71:157

    Article  CAS  Google Scholar 

  3. Jahangiri H, Bennett J, Mahjoubi P, Wilson K, Gu S (2014) Catal Sci Technol 4:2210

    Article  CAS  Google Scholar 

  4. Abello S, Montane D (2011) ChemSusChem 4:1538

    Article  CAS  PubMed  Google Scholar 

  5. Shroff MD, Kalakkad DS, Coulter KE, Kohler SD, Harrington MS, Jackson NB, Sault AG, Datye AK (1995) J Catal 156:185

    Article  CAS  Google Scholar 

  6. Jothimurugesan K, Spivey JJ, Gangwal SK, Goodwin JG (1998) Stud Surf Sci Catal 119:215

    Article  CAS  Google Scholar 

  7. Pham HN, Datye AK (2000) Catal Today 58:233

    Article  CAS  Google Scholar 

  8. Bukur DB, Lang X, Mukesh D, Zimmerman WH, Rasynek MP, Li C (1990) Ind Eng Chem Res 29:1588

    Article  CAS  Google Scholar 

  9. ** Y, Xu H, Datye AK (2006) Microsc Microanal 12:124

    Article  CAS  PubMed  Google Scholar 

  10. Dlamini H, Motjope T, Joorst G, ter Stege G, Mdleleni M (2002) Catal Lett 78:201

    Article  CAS  Google Scholar 

  11. Sirimanothan N, Hamdeh HH, Zhang Y, Davis BH (2002) Catal Lett 82:181

    Article  CAS  Google Scholar 

  12. Sarkar A, Jacobs G, Ji Y, Hamdeh HH, Davis BH (2008) Catal Lett 121:1

    Article  CAS  Google Scholar 

  13. Yen FS, Chen WC, Yang JM, Hong CT (2002) Nano Lett 2(3):245

    Article  CAS  Google Scholar 

  14. Bukur DB, Ma W, Vazquez VC (2005) Top Catal 32:135

    Article  CAS  Google Scholar 

  15. Jacobs G, Pendyala VRR, Martinelli M, Shafer WD, Gnanamani MK, Khalid S, MacLennan A, Hu Y, Davis BH (2017) Catal Lett 147:1861

    Article  CAS  Google Scholar 

  16. Li L, Wei W, Behrens M (2012) Solid State Sci 14(7):971

    Article  CAS  Google Scholar 

  17. Xu J, Bartholomew CH (2005) J Phys Chem B 109:2392

    Article  CAS  PubMed  Google Scholar 

  18. Schultz JF, Hall WK, Seligman B, Anderson RB (1955) J Am Chem Soc 77:213

    Article  Google Scholar 

  19. Datye AK, ** Y, Mansker L, Motjope RT, Dlamini TH, Coville NJ (2000) Stud Surf Sci Catal 130:1139

    Article  Google Scholar 

  20. Niemantsverdriet JW, Van der Kraan M, Van Dijk WL (1989) J Phys Chem 84:363

    Google Scholar 

  21. Xu K, Sun B, Lin J, Wen W, Pei Y, Yan S (2014) Nat Commun 5:5783

    Article  CAS  PubMed  Google Scholar 

  22. de Smit E, Cinquini F, Beale AM, Safonova OV, van Beek W, Sautet P, Weckhuysen BM (2010) J Am Chem Soc 132:14928

    Article  CAS  PubMed  Google Scholar 

  23. Wan HJ, Wu BS, Zhang CH, **ang HW, Li YW, Xu BF, Yi F (2007) Catal Commun 8:1538

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under Grant No. 1444779 and the authors also acknowledge the financial support received from the Commonwealth of Kentucky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burtron H. Davis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beasley, C., Gnanamani, M.K., Hamdeh, H.H. et al. Effect of Gallium Additions on Reduction, Carburization and Fischer–Tropsch Activity of Iron Catalysts. Catal Lett 148, 1920–1928 (2018). https://doi.org/10.1007/s10562-018-2398-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2398-0

Keywords

Navigation