Log in

Fischer–Tropsch Synthesis: Effect of Activation Gas After Varying Cu Promoter Loading Over K-Promoted Fe-Based Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effects of activation gas and copper promoter loading on the Fischer–Tropsch synthesis performance of potassium promoted precipitated iron-based catalysts were investigated using a continuously stirred tank reactor. In this study, CO and syngas (H2/CO = 0.7) activated catalysts were tested after varying the copper promoter loading (0, 2 and 5 %, atomic ratios relative to iron). After attaining a steady-state conversion for the CO-activated catalysts, similar or slightly higher CO conversions were exhibited with increasing copper loading, and the induction period was reduced with increasing copper loading. Partial pressure of hydrogen in the activation gas influenced the resulting activity of the catalysts. For syngas activated catalysts, CO conversion was found to increase with increasing copper loading up to 2 %, and slightly decrease with further increases in copper (5 %) loading. For similar CO conversion levels, the selectivities were similar for the CO activated catalysts, whereas for the syngas activated catalysts, the selectivity varied with copper loading. With increasing copper loading, lower hydrocarbon (methane and C2–C4) selectivities decreased and the corresponding higher hydrocarbon (C5+) selectivity increased.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. de Smit E, Weckhuysen BM (2008) Chem Soc Rev 37:2758

    Article  Google Scholar 

  2. Rao VUS, Stiegel GJ, Cinquerance GJ, Srivastava RD (1992) Fuel Proc Tech 30:83

    Article  CAS  Google Scholar 

  3. van Steen E, Claeys M (2008) Chem Eng Tech 31:655

    Article  Google Scholar 

  4. Bukur DB, Mukesh D, Patel SA (1990) Ind Eng Chem Res 29:194

    Article  CAS  Google Scholar 

  5. Wan HJ, Wu BS, Zhang CH, **ang HW, Li YW (2008) J Mol Catal 283:33

    Article  CAS  Google Scholar 

  6. Ma W, Kugler EL, Dadyburjor DB (2007) Energy Fuels 21:1832

    Article  CAS  Google Scholar 

  7. Li SZ, Li AW, Krishnamoorthy S, Iglesia E (2001) Catal Lett 77:197

    Article  CAS  Google Scholar 

  8. O’Brien RJ, Davis BH (2004) Catal Lett 94:1

    Article  Google Scholar 

  9. Dictor RA, Bell AT (1986) J Catal 97:121

    Article  CAS  Google Scholar 

  10. Grzybek T, Klinik J, Papp H, Baerns M (1990) Chem Eng Technol 13:156

    Article  CAS  Google Scholar 

  11. Li S, Krishnamoorthy S, Li A, Meitzner GD, Iglesia E (2002) J Catal 206:202

    Article  CAS  Google Scholar 

  12. ** Y, Datye AK (2000) J Catal 196:8

    Article  CAS  Google Scholar 

  13. O’Brien RJ, Xu L, Spicer RL, Bao S, Milburn DR, Davis BH (1997) Catal Today 36:325

    Article  Google Scholar 

  14. Wachs IE, Duyer DJ, Iglesia E (1984) Appl Catal 12:201

    Article  CAS  Google Scholar 

  15. Zhang CH, Yang Y, Teng BT, Li TZ, Zheng HY, **ang HW, Li YW (2006) J Catal 237:405

    Article  CAS  Google Scholar 

  16. Chonco ZH, Lodya L, Claeys M, van Steen E (2013) J Catal 308:363

    Article  CAS  Google Scholar 

  17. Pansanga K, Lohitharn N, Chien ACY, Lotero E, Panpranot J, Praserthdam P, Goodwin JG (2007) Appl Catal A Gen 332:130

    Article  CAS  Google Scholar 

  18. Ma W, Kugler EL, Dadyburjor DB (2011) Energy Fuels 25:1931

    Article  CAS  Google Scholar 

  19. Hayakawa H, Tanaka H, Fujimoto K (2006) Appl Catal A Gen 310:24

    Article  CAS  Google Scholar 

  20. Wielers AFH, Koebrugge GW, Geus JW (1990) J Catal 121:375

    Article  CAS  Google Scholar 

  21. Anderson RB (1958) In: Emmett PH (ed) Catalysis, vol 4. Reinhold Publishing, New York, p 29

    Google Scholar 

  22. O’Brien RJ, Xu L, Spicer RL, Davis BH (1996) Energy Fuels 10:921

    Article  Google Scholar 

  23. Ribeiro MC, Jacobs G, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2010) J Phys Chem C 114:7895

    Article  CAS  Google Scholar 

  24. Ribeiro MC, Jacobs G, Pendyala R, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2011) J Phys Chem C 115:4783

    Article  CAS  Google Scholar 

  25. Jacobs G, Sarkar A, Davis BH, Cronauer DC, Kropf AJ, Marshall CL (2009) In: Davis BH, Occelli ML (eds) Advances in Fischer-Tropsch synthesis, catalysts and catalysis. Taylor & Francis, Florida, pp 119–146

    Google Scholar 

  26. Niemantsverdriet JW, van der Krann AM, van Dijk WL, van der Baan HS (1980) J Phys Chem 84:3363

    Article  CAS  Google Scholar 

  27. Butt JB (1990) Catal Lett 7:61

    Article  CAS  Google Scholar 

  28. Hilmen AM, Lindvag OA, Bergene E, Schanke D, Eri S, Holmen A (2001) Stud Surf Sci Catal 136:295–300

    Article  CAS  Google Scholar 

  29. Pendyala VRR, Jacobs G, Luo M, Davis BH (2013) Catal Lett 143:395

    Article  CAS  Google Scholar 

  30. Kuivila CS, Stair PC, Butt JB (1989) J Catal 118:299

    Article  CAS  Google Scholar 

  31. Madon RJ, Reyes SC, Iglesia E (1991) J Phys Chem 95:7795

    Article  CAS  Google Scholar 

  32. Iglesia E, Reyes SC, Madon RJ (1991) J Catal 129:238

    Article  CAS  Google Scholar 

  33. Bukur DB, Lang X, Akgerman A, Feng Z (1997) Ind Eng Chem Res 36:2580

    Article  CAS  Google Scholar 

  34. Schulz H, Claeys M (1999) Appl Catal A Gen 186:71

    Article  CAS  Google Scholar 

  35. Kuipers EW, Scheper S, Wilson JH, Vinkenburg H, Oosterbeek H (1996) J Catal 158:228

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Wyoming contract number 1001541-Davis and the Commonwealth of Kentucky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burtron H. Davis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pendyala, V.R.R., Jacobs, G., Hamdeh, H.H. et al. Fischer–Tropsch Synthesis: Effect of Activation Gas After Varying Cu Promoter Loading Over K-Promoted Fe-Based Catalyst. Catal Lett 144, 1624–1635 (2014). https://doi.org/10.1007/s10562-014-1302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1302-9

Keywords

Navigation