Log in

Beckmann Rearrangement of Cyclohexanone Oxime to ε-Caprolactam in a Modified Catalytic System of Trifluoroacetic Acid

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A catalytic system, including trifluoroacetic acid and organic solvent additives, was applied to carry out the Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam. High conversion (100 %) and high selectivity to caprolactam (>99 %) have been successfully obtained using acetonitrile as the additive. The effect of several organic solvents on the reaction was investigated, and the catalyst composition was optimized. The results indicate that the catalytic system with 10 wt% of acetonitrile can give the fastest reaction rate. An immiscible two-phase system was proposed to study the side reaction of oxime hydrolysis which determines the selectivity. Based on the results, a simplified reaction process was suggested and a mathematical kinetic model was developed. The performance of the catalytic system is much better than the classic process. Neutralization agent and ammonium sulfate by-product are both completely avoided.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme. 1
Fig. 1
Fig. 2
Scheme. 2
Fig. 3

Similar content being viewed by others

References

  1. Beckmann E (1886) Chem Ber 19:988

    Article  Google Scholar 

  2. Zuidhof KT, de Croon MHJM, Schouten JC (2010) AIChE J 56:1297

    CAS  Google Scholar 

  3. Zuidhof KT, de Croon MHJM, Schouten JC, Tinge JT (2012) Chem Eng Technol 35:1

    Article  Google Scholar 

  4. Ritz J, Fuchs H, Kieczka H, Moran WC (2001) Ullmann’s encyclopedia of industrial chemistry, 6th edn, Weinheim

  5. Dahlhoff G, Niederer JPM, Hoelderich WF (2001) Cat Rev Sci Eng 43:381

    Article  CAS  Google Scholar 

  6. Heitmann GP, Dahlhoff G, Hölderich WF (1999) J Catal 186:12

    Article  CAS  Google Scholar 

  7. Fernández AB, Boronat M, Blasco T, Corna A (2005) Angew Chem Int Ed 44:2370

    Article  Google Scholar 

  8. Mao DS, Lu GZ, Chen QL, **e ZK, Zhang YX (2001) Catal Lett 244:273

    Google Scholar 

  9. Bordoloi A, Halligudi SB (2010) Appl Catal A 379:141

    Article  CAS  Google Scholar 

  10. Marthala VRR, Frey J, Hunger M (2010) Catal Lett 135:91

    Article  Google Scholar 

  11. Pavel CC, Palkovits R, Schüth F, Schmidt W (2008) J Catal 254:84

    Article  CAS  Google Scholar 

  12. Anilkumar M, Hoelderich WF (2012) Catal Today 198:289

    Article  CAS  Google Scholar 

  13. Sato O, Ikushima Y, Yokoyama T (1998) J Org Chem 63:9100

    Article  CAS  Google Scholar 

  14. Ikushima Y, Hatakeda K, Sato O, Yokoyama T, Arai M (2000) J Am Chem Soc 122:1908

    Article  CAS  Google Scholar 

  15. Guo S, Du ZY, Zhang SG, Li DM, Li ZP, Deng YQ (2006) Green Chem 8:296

    Article  CAS  Google Scholar 

  16. Zicmanis A, Katkevica S, Mekss P (2009) Catal Commun 10:614

    Article  CAS  Google Scholar 

  17. Maia A, Albanese DCM, Landini D (2012) Tetrahedron 68:1947

    Article  CAS  Google Scholar 

  18. Yamabe S, Tsuchida N, Yamazaki S (2005) J Org Chem 70:10638

    Article  CAS  Google Scholar 

  19. Ronchin L, Bortoluzzi M, Vavasori A (2008) J Mol Struct 858:46

    Article  CAS  Google Scholar 

  20. Stephen H, Staskun B (1956) J Chem Soc 204:980

    Article  Google Scholar 

  21. McCullough JD Jr, Curtin DY, Paul IC (1972) J Am Chem Soc 94:874

    Article  CAS  Google Scholar 

  22. Jones B (1944) Chem Rev 35:335

    Article  CAS  Google Scholar 

  23. Luca LD, Giacomelli G, Porcheddu A (2002) J Org Chem 67:6272

    Article  Google Scholar 

  24. Furuya Y, Ishihara K, Yamamoto H (2005) J Am Chem Soc 127:11240

    Article  CAS  Google Scholar 

  25. Wang B, Gu YL, Luo C, Yang T, Yang LM, Suo JS (2004) Tetrahedron Lett 45:3369

    Article  CAS  Google Scholar 

  26. Ronchin L, Vavasori A, Bortoluzzi M (2008) Catal Commun 10:251

    Article  CAS  Google Scholar 

  27. Ronchin L, Vavasori A (2009) J Mol Catal A 313:22

    Article  CAS  Google Scholar 

  28. Zhang JS, Wang K, Lu YC, Luo GS (2012) AIChE J 58:925

    Article  CAS  Google Scholar 

  29. Zhang JS, Wang K, Lu YC, Luo GS (2012) AIChE J 58:3156

    Article  CAS  Google Scholar 

  30. Egberink H, Van Heerden C (1980) Anal Chim Acta 118:359

    Article  CAS  Google Scholar 

  31. Nguyen MT, Raspoet G, Vanquickenborne LG (1997) J Am Chem Soc 119:2552

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the supports of the National Natural Science Foundation of China (21036002, 21176136) and National Basic Research Program of China (2012CBA01203) on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J.S., Riaud, A., Wang, K. et al. Beckmann Rearrangement of Cyclohexanone Oxime to ε-Caprolactam in a Modified Catalytic System of Trifluoroacetic Acid. Catal Lett 144, 151–157 (2014). https://doi.org/10.1007/s10562-013-1114-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1114-3

Keywords

Navigation