Log in

Water–Gas Shift Reaction Over Aluminum Promoted Cu/CeO2 Nanocatalysts Characterized by XRD, BET, TPR and Cyclic Voltammetry (CV)

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of aluminum promoted Cu/CeO2 nanocatalysts with aluminum content in the range of 0–5wt.% were prepared by co-precipitation method and examined with respect to their catalytic performance for the water–gas shift (WGS) reaction. The catalysts were characterized by XRD, BET, H2-TPR and cyclic voltammetry (CV) techniques. The results indicate that catalytic activity increases with the aluminum content at first, but then decreases with the further increase of aluminum content. Hereinto, Cu/CeO2 catalyst doped with 1 wt.% of aluminum shows the highest catalytic activity (CO conversion reaches 84.4% at 200 °C) and thermal stability for WGS reaction. Correlation to the results from above characterization, it is found that the variation of catalytic activity is in very agreement with that of the surface area, the area of peak γ (i.e., the reduction of surface copper oxide (crystalline forms) interacted with surface oxygen vacancies on ceria), and the area of peak C2 and \(\hbox{A}_{1} (\hbox{Cu}^{0}\,\leftrightarrow\,\hbox{Cu}^{2+}\) in cyclic voltammetry process), respectively. Enough evidence was found for the fact that the metallic copper (Cu0) interacted with surface oxygen vacancies on ceria is the active site for WGS reaction over Cu/CeO2 catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Trimm DL, Önsan ZI (2001) Catal Rev 43:31

    Article  CAS  Google Scholar 

  2. Swartz SL, Seabaugh MM, Holt CT, Dawson WJ (2001) Fuel cells Bull 4:7

    Article  Google Scholar 

  3. Fu Q, Weber A, Flytzani-Stephanopoulos M (2001) Catal Lett 77:87

    Article  CAS  Google Scholar 

  4. Idakiev V, Yuan Z-Y, Tabakova T, Su B-L (2005) Appl Catal A 281:149

    Article  CAS  Google Scholar 

  5. Zhang FL, Zheng Q, Wei KM, Lin XY, Zhang HH, Li JW, Cao YN (2006) Catal Lett 108:131

    Article  CAS  Google Scholar 

  6. Wang X, Gorte RJ, Wagner JP (2002) J Catal 212:225

    Article  CAS  Google Scholar 

  7. Panagiotopoulou P, Christodoulakis A, Kondarides DI, Boghosian S (2006) J Catal 240:114

    Article  CAS  Google Scholar 

  8. Duarte de Farias AM, Barandas APMG, Perez RF, Fraga MA (2007) J Power Sources 165:854

    Article  CAS  Google Scholar 

  9. Basinska A, Domka F (1997) Catal Lett 43:59

    Article  CAS  Google Scholar 

  10. Li Y, Fu Q, Flytzani-Stephanopoulos M (2000) Appl Catal B 27:179

    Article  Google Scholar 

  11. Liu W (1995) Sc.D. Thesis, Massachusetts Institute of Technology

  12. Qi X, Flytzani-Stephanopoulos M (2004) Ind Eng Chem Res 43:3055

    Article  CAS  Google Scholar 

  13. Pintar A, Batista J, Hočevar S (2007) J Colloid Interface Sci 307:145

    Article  CAS  Google Scholar 

  14. Andreeva D, Ivanov I, Ilieva L, Abrashev MV (2006) Appl Catal A 302:127

    Article  CAS  Google Scholar 

  15. Yahiro H, Nakaya K, Yamamoto T, Saiki K, Yamaura H (2006) Catal Commun 7:228

    Article  CAS  Google Scholar 

  16. Park JW, Jeong JH, Yoon WL, Jung H, Lee HT, Lee DK, Park YK, Rhee YW (2004) Appl Catal A 274:25

    Article  CAS  Google Scholar 

  17. Men Y, Gnaser H, Zapf R, Hessel V, Ziegler C, Kolb G (2004) Appl Catal A 277:83

    Article  CAS  Google Scholar 

  18. Jiang XY, Lou LP, Chen YX, Zheng XM (2003) Mol J Catal A 197:193

    Article  CAS  Google Scholar 

  19. **e YC, Tang YQ (1990) Adv Catal 37:1

    Article  CAS  Google Scholar 

  20. Chen Y, Zhang L (1992) Catal Lett 12:51

    Article  Google Scholar 

  21. Larsson PO, Andersson A (2000) Appl Catal B 24:175

    Article  CAS  Google Scholar 

  22. Yao CZ, Wang LC, Liu YM, Wu GS, Cao Y, Dai WL, He HY, Fan KN (2006) Appl Catal A 297:151

    Article  CAS  Google Scholar 

  23. Zheng XC, Zhang XL, Wang XY, Wang SR, Wu SH (2005) Appl Catal A 295:142

    Article  CAS  Google Scholar 

  24. Tang XL, Zhang BC, Li Y, Xu YD, **n Q, Shen WJ (2004) Catal Today 93–95:191

    Article  CAS  Google Scholar 

  25. George A, Theophilos I (2003) Appl Catal A 224:155

    Google Scholar 

  26. Zhu J, Zhao Z, **ao D, Li J, Yang X, Wu Y (2005) Electrochem Commun 7:58

    Article  CAS  Google Scholar 

  27. Zhu J, Zhao Z, **ao D, Li J, Yang X, Wu Y (2005) J Mol Catal A 238:35

    Article  CAS  Google Scholar 

  28. Wang X, Rodriguez JA, Hanson JC, Gamarra D, Arias AM, Garcia MF (2006) J Phys Chem B 110:428

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support from the Department of Science of the People’s Republic of China (20271012) and the Department of Science & Technology of Fujian Province (2005H201-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Zhan, Y., Zheng, Q. et al. Water–Gas Shift Reaction Over Aluminum Promoted Cu/CeO2 Nanocatalysts Characterized by XRD, BET, TPR and Cyclic Voltammetry (CV). Catal Lett 118, 91–97 (2007). https://doi.org/10.1007/s10562-007-9155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9155-0

Keywords

Navigation