Log in

Updates and new directions in the use of radiation therapy for the treatment of pancreatic adenocarcinoma: dose, sensitization, and novel technology

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Panc reatic ductal adenocarcinoma (PDAC) is a devastating malignancy. There have been few advances that have substantially improved overall survival in the past several years. On its current trajectory, the deaths from PDAC are expected to cross that from all gastrointestinal cancers combined by 2030. Radiation therapy is a technically very complex modality that bridges multiple different treatment strategies. It represents a hybrid among advanced diagnostic imaging, local (often ablative) intervention, and heterogeneous biological mechanisms contributing to normal and oncologic cell kill. In this article, we bring an overview of the several promising strategies that are currently being investigated to improve outcomes using radiation therapy for patients with PDAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(1), 7–30.

    Google Scholar 

  2. Sohal, D., Duong, M. T., Ahmad, S. A., et al. (2020). SWOG S1505: Results of perioperative chemotherapy (peri-op CTx) with mFOLFIRINOX versus gemcitabine/nab-paclitaxel (Gem/nabP) for resectable pancreatic ductal adenocarcinoma (PDA). In: American Society of Clinical Oncology.

  3. Abrams, R. A., Winter, K. A., Regine, W. F., et al. (2012). Failure to adhere to protocol specified radiation therapy guidelines was associated with decreased survival in RTOG 9704–A phase III trial of adjuvant chemotherapy and chemoradiotherapy for patients with resected adenocarcinoma of the pancreas. International Journal of Radiation Oncology Biology Physics, 82(2), 809–816.

    Article  CAS  PubMed  Google Scholar 

  4. Hammel, P., Huguet, F., van Laethem, J. L., et al. (2016). Effect of chemoradiotherapy vs chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of gemcitabine with or without erlotinib: The LAP07 Randomized Clinical Trial. JAMA, 315(17), 1844–1853.

    Article  CAS  PubMed  Google Scholar 

  5. Loehrer, P. J., Sr., Feng, Y., Cardenes, H., et al. (2011). Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: An Eastern Cooperative Oncology Group trial. Journal of Clinical Oncology, 29(31), 4105–4112.

  6. (1979) .A multi-institutional comparative trial of radiation therapy alone and in combination with 5-fluorouracil for locally unresectable pancreatic carcinoma. The Gastrointestinal Tumor Study Group. Anno of Surgery, 189(2), 205–208.

  7. Moertel, C. G., Frytak, S., Hahn, R. G., et al. (1981). Therapy of locally unresectable pancreatic carcinoma: A randomized comparison of high dose (6000 rads) radiation alone, moderate dose radiation (4000 rads + 5-fluorouracil), and high dose radiation + 5-fluorouracil: The Gastrointestinal Tumor Study Group. Cancer, 48(8), 1705–1710.

    Article  CAS  PubMed  Google Scholar 

  8. Hammel, P., Huguet, F., van Laethem, J. L., et al. (2016). Effect of chemoradiotherapy vs chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of gemcitabine with or without erlotinib: The LAP07 Randomized Clinical Trial. JAMA, 315(17), 1844–1853.

    Article  CAS  PubMed  Google Scholar 

  9. Bradley, J. D., Hu, C., Komaki, R. R., et al. (2020). Long-term results of NRG Oncology RTOG 0617: Standard- versus high-dose chemoradiotherapy with or without cetuximab for unresectable stage III non-small-cell lung cancer. Journal of Clinical Oncology, 38(7), 706–714.

    Article  CAS  PubMed  Google Scholar 

  10. Minsky, B. D., Pajak, T. F., Ginsberg, R. J., et al. (2002). INT 0123 (Radiation Therapy Oncology Group 94–05) phase III trial of combined-modality therapy for esophageal cancer: High-dose versus standard-dose radiation therapy. Journal of Clinical Oncology, 20(5), 1167–1174.

    Article  CAS  PubMed  Google Scholar 

  11. Couwenberg, A. M., Burbach, J. P. M., Berbee, M., et al. (2020). Efficacy of dose-escalated chemoradiation on complete tumor response in patients with locally advanced rectal cancer (RECTAL-BOOST): A phase 2 randomized controlled trial. International Journal of Radiation Oncology Biology Physics, 108(4), 1008–1018.

    Article  PubMed  Google Scholar 

  12. Maeda, A., Chen, Y., Bu, J., Mujcic, H., Wouters, B. G., & DaCosta, R. S. (2017). In vivo imaging reveals significant tumor vascular dysfunction and increased tumor hypoxia-inducible factor-1α expression induced by high single-dose irradiation in a pancreatic tumor model. International Journal of Radiation Oncology Biology Physics, 97(1), 184–194.

    Article  CAS  PubMed  Google Scholar 

  13. Song, C. W., Lee, Y. J., Griffin, R. J., et al. (2015). Indirect tumor cell death after high-dose hypofractionated irradiation: Implications for stereotactic body radiation therapy and stereotactic radiation surgery. International Journal of Radiation Oncology Biology Physics, 93(1), 166–172.

    Article  PubMed  Google Scholar 

  14. Chang, J. Y., Senan, S., Paul, M. A., et al. (2015). Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: A pooled analysis of two randomised trials. The Lancet Oncology, 16(6), 630–637.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rusthoven, K. E., Kavanagh, B. D., Cardenes, H., et al. (2009). Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases. Journal of Clinical Oncology, 27(10), 1572–1578.

    Article  PubMed  Google Scholar 

  16. Bernard, V., & Herman, J. M. (2020). Pancreas SBRT: Who, what, when, where, and how…. Practical Radiation Oncology, 10(3), 183–185.

    Article  PubMed  Google Scholar 

  17. Reyngold, M., O’Reilly, E. M., Varghese, A. M., et al. (2021). Association of ablative radiation therapy with survival among patients with inoperable pancreatic cancer. JAMA Oncology., 7(5), 735–738.

    Article  PubMed  Google Scholar 

  18. Rudra, S., Jiang, N., Rosenberg, S. A., et al. (2019). Using adaptive magnetic resonance image-guided radiation therapy for treatment of inoperable pancreatic cancer. Cancer Medicine, 8(5), 2123–2132.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhu, X., Cao, Y., Liu, W., et al. (2021). Stereotactic body radiotherapy plus pembrolizumab and trametinib versus stereotactic body radiotherapy plus gemcitabine for locally recurrent pancreatic cancer after surgical resection: An open-label, randomised, controlled, phase 2 trial. Lancet Oncoogy.

  20. Krishnan, S., Chadha, A. S., Suh, Y., et al. (2016). Focal radiation therapy dose escalation improves overall survival in locally advanced pancreatic cancer patients receiving induction chemotherapy and consolidative chemoradiation. International Journal of Radiation Oncology Biology Physics, 94(4), 755–765.

    Article  PubMed  Google Scholar 

  21. Hassanzadeh C. Rudra S BA, Hawkins W. Ablative five-fraction stereotactic body radiation therapy for inoperable pancreatic cancer using online MR-guided adaptation. Advances in Radiation Oncology

  22. Chuong, M. D., Bryant, J., Mittauer, K. E,, et al. (2020). Ablative 5-fraction stereotactic magnetic resonance-guided radiation therapy with on-table adaptive replanning and elective nodal irradiation for inoperable pancreas cancer. Practical Radiation Oncology.

  23. Hall, W. A., Paulson, E. S., van der Heide, U. A., et al. (2019). The transformation of radiation oncology using real-time magnetic resonance guidance: A review. European Journal of Cancer, 122, 42–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hall, W. A., Small, C., Paulson, E., et al. (2021). Magnetic resonance guided radiation therapy for pancreatic adenocarcinoma, advantages, challenges, current approaches, and future directions. Frontiers in Oncology, 11, 628155.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huart, C., Chen, J. W., Le Calvé, B., Michiels, C., & Wéra, A. C. (2020). Could protons and carbon ions be the silver bullets against pancreatic cancer? International Journal of Molecular Sciences, 21(13), 4767.

    Article  CAS  PubMed Central  Google Scholar 

  26. Nichols, R. C., Huh, S., Li, Z., & Rutenberg, M. (2015). Proton therapy for pancreatic cancer. World Journal of Gastrointestinal Oncology, 7(9), 141–147.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mukherjee, S., Hurt, C. N., Bridgewater, J., et al. (2013). Gemcitabine-based or capecitabine-based chemoradiotherapy for locally advanced pancreatic cancer (SCALOP): A multicentre, randomised, phase 2 trial. The Lancet Oncology, 14(4), 317–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Malouff, T. D., Krishnan, S., Hallemeier, C. L., et al. (2020). Carbon ion radiotherapy in the treatment of pancreatic cancer: A review. Pancreas, 49(6), 737–743.

    Article  PubMed  Google Scholar 

  29. Liermann, J., Shinoto, M., Syed, M., Debus, J., Herfarth, K., & Naumann, P. (2020). Carbon ion radiotherapy in pancreatic cancer: A review of clinical data. Radiotherapy and Oncology, 147, 145–150.

    Article  CAS  PubMed  Google Scholar 

  30. Favaudon, V., Caplier, L., Monceau, V., et al. (2014). Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Science Translational Medicine, 6(245), 245ra293.

    Article  CAS  Google Scholar 

  31. Omyan, G., Musa, A. E., Shabeeb, D., Akbardoost, N., & Gholami, S. (2020). Efficacy and toxicity of FLASH radiotherapy: A systematic review. Journal of Cancer Research and Therapeutics, 16(6), 1203–1209.

    PubMed  Google Scholar 

  32. van Marlen, P., Dahele, M., Folkerts, M., Abel, E., Slotman, B. J., & Verbakel, W. (2020). Bringing FLASH to the clinic: Treatment planning considerations for ultrahigh dose-rate proton beams. International Journal of Radiation Oncology Biology Physics, 106(3), 621–629.

    Article  CAS  PubMed  Google Scholar 

  33. Evans, D. B., Varadhachary, G. R., Crane, C. H., et al. (2008). Preoperative gemcitabine-based chemoradiation for patients with resectable adenocarcinoma of the pancreatic head. Journal of Clinical Oncology, 26(21), 3496–3502.

    Article  CAS  PubMed  Google Scholar 

  34. Versteijne, E., Suker, M., Groothuis, K., et al. (2020). Preoperative chemoradiotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer: Results of the Dutch Randomized Phase III PREOPANC Trial. Journal of Clinical Oncology, 38(16), 1763–1773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wittmann, D., Hall, W. A., Christians, K. K., et al. (2020). Impact of neoadjuvant chemoradiation on pathologic response in patients with localized pancreatic cancer. Frontiers in Oncology, 10, 460.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nguyen, L., Dobiasch, S., Schneider, G., et al. (2021). Impact of DNA repair and reactive oxygen species levels on radioresistance in pancreatic cancer. Radiotherapy and Oncology, 159, 265–276.

    Article  CAS  PubMed  Google Scholar 

  37. Marechal, A., & Zou, L. (2013). DNA damage sensing by the ATM and ATR kinases. Cold Spring Harbor Perspectives in Biology, 5(9), a012716.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Fokas, E., Prevo, R., Pollard, J. R., et al. (2012). Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death and Disease, 3, e441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Prevo, R., Fokas, E., Reaper, P. M., et al. (2012). The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy. Cancer Biology & Therapy, 13(11), 1072–1081.

    Article  CAS  Google Scholar 

  40. Dillon, M. T., Boylan, Z., Smith, D., et al. (2018). PATRIOT: A phase I study to assess the tolerability, safety and biological effects of a specific ataxia telangiectasia and Rad3-related (ATR) inhibitor (AZD6738) as a single agent and in combination with palliative radiation therapy in patients with solid tumours. Clinical and Translational Radiation Oncology, 12, 16–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Parsels, L. A., Engelke, C. G., Parsels, J., et al. (2021). Combinatorial efficacy of Olaparib with radiation and ATR inhibitor requires PARP1 protein in homologous recombination-proficient pancreatic cancer. Molecular Cancer Therapeutics, 20(2), 263–273.

    Article  CAS  PubMed  Google Scholar 

  42. Kakarougkas, A., & Jeggo, P. A. (2014). DNA DSB repair pathway choice: An orchestrated handover mechanism. British Journal of Radiology, 87(1035), 20130685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zenke, F. T., Zimmermann, A., Sirrenberg, C., et al. (2020). Pharmacologic inhibitor of DNA-PK, M3814, potentiates radiotherapy and regresses human tumors in mouse models. Molecular Cancer Therapeutics, 19(5), 1091–1101.

    Article  CAS  PubMed  Google Scholar 

  44. Haince, J. F., McDonald, D., Rodrigue, A., et al. (2008). PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. Journal of Biological Chemistry, 283(2), 1197–1208.

    Article  CAS  PubMed  Google Scholar 

  45. Lohse, I., Kumareswaran, R., Cao, P., et al. (2016). Effects of combined treatment with ionizing radiation and the PARP inhibitor olaparib in BRCA mutant and wild type patient-derived pancreatic cancer xenografts. PLoS One, 11(12), e0167272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Estrada-Bernal, A., Chatterjee, M., Haque, S. J., et al. (2015). MEK inhibitor GSK1120212-mediated radiosensitization of pancreatic cancer cells involves inhibition of DNA double-strand break repair pathways. Cell Cycle, 14(23), 3713–3724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Poon, E., Mullins, S., Watkins, A., et al. (2017). The MEK inhibitor selumetinib complements CTLA-4 blockade by reprogramming the tumor immune microenvironment. Journal for Immunotherapy of Cancer, 5(1), 63.

    Article  PubMed  PubMed Central  Google Scholar 

  48. El-Mahdy, M. A., Alzarie, Y. A., Hemann, C., Badary, O. A., Nofal, S., & Zweier, J. L. (2020). The novel SOD mimetic GC4419 increases cancer cell killing with sensitization to ionizing radiation while protecting normal cells. Free Radical Biology & Medicine, 160, 630–642.

    Article  CAS  Google Scholar 

  49. George, A. J., Thomas, W. G., & Hannan, R. D. (2010). The renin-angiotensin system and cancer: Old dog, new tricks. Nature Reviews Cancer, 10(11), 745–759.

    Article  CAS  PubMed  Google Scholar 

  50. Kim, S., Toyokawa, H., Yamao, J., et al. (2014). Antitumor effect of angiotensin II type 1 receptor blocker losartan for orthotopic rat pancreatic adenocarcinoma. Pancreas, 43(6), 886–890.

    Article  CAS  PubMed  Google Scholar 

  51. Kumar, V., Boucher, Y., Liu, H., et al. (2016). Noninvasive assessment of losartan-induced increase in functional microvasculature and drug delivery in pancreatic ductal adenocarcinoma. Translational Oncology, 9(5), 431–437.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liu, H., Naxerova, K., Pinter, M., et al. (2017). Use of angiotensin system inhibitors is associated with immune activation and longer survival in nonmetastatic pancreatic ductal adenocarcinoma. Clinical Cancer Research, 23(19), 5959–5969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tang, C., Wang, X., Soh, H., et al. (2014). Combining radiation and immunotherapy: A new systemic therapy for solid tumors? Cancer Immunology Research, 2(9), 831–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ho, W. J., Jaffee, E. M., & Zheng, L. (2020). The tumour microenvironment in pancreatic cancer — Clinical challenges and opportunities. Nature Reviews Clinical Oncology., 17(9), 527–540.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pandol, S., Edderkaoui, M., Gukovsky, I., Lugea, A., & Gukovskaya, A. (2009). Desmoplasia of pancreatic ductal adenocarcinoma. Clinical Gastroenterology and Hepatology, 7(11 Suppl), S44-47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bonaventura, P., Shekarian, T., Alcazer, V., et al. (2019). Cold tumors: A therapeutic challenge for immunotherapy. Frontiers in Immunology, 10, 168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ngwa, W., Irabor, O. C., Schoenfeld, J. D., Hesser, J., Demaria, S., & Formenti, S. C. (2018). Using immunotherapy to boost the abscopal effect. Nature Reviews Cancer, 18(5), 313–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The project was supported by the National Center for Advancing Translational Sciences, National Institutes of Health, Award Number KL2TR001438. The content is solely the responsibility of the author(s) and does not necessarily represent the official views of the NIH. Work in the lab of Asfar S. Azmi is supported by NCI R37CA215427 and NCI R01CA240607 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Hall.

Ethics declarations

Ethics approval

n/a.

Informed consent

n/a.

Conflict of interest

The Department of Radiation Oncology at MCW receives research and travel support from Elekta AB, Stockholm, Sweden.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, W.A., Kamgar, M., Erickson, B.A. et al. Updates and new directions in the use of radiation therapy for the treatment of pancreatic adenocarcinoma: dose, sensitization, and novel technology. Cancer Metastasis Rev 40, 879–889 (2021). https://doi.org/10.1007/s10555-021-09993-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-021-09993-z

Keywords

Navigation