Log in

Laterality of CT-measured hepatic extracellular volume fraction in patients with chronic thromboembolic pulmonary hypertension

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Purpose

This study examines the hepatic extracellular volume fraction (ECV) disparity between the left and right lobes (ECV_left and ECV_right) in patients with chronic thromboembolic pulmonary hypertension (CTEPH), its association with right heart catheterization (RHC) metrics, and with intolerance to increased pulmonary hypertension (PH)-targeted medication dosages.

Methods

We retrospectively analyzed 72 CTEPH-diagnosed patients who underwent equilibrium-phase abdominal dual-energy CT (DECT) and RHC. Hepatic ECVs, derived from DECT’s iodine maps using circular regions of interest in the liver and aorta, were correlated with RHC parameters via Spearman’s rank correlation and lobe differences through the Wilcoxon signed-rank test. Logistic regression assessed cases with ECV_left exceeding ECV_right by > 0.05, while receiver operating characteristic curve analysis gauged ECVs’ predictive power for medication intolerance.

Results

Of the 72 patients (57 females; median age 69), ECV_total (0.24, IQR 0.20–0.27) moderately correlated with RHC parameters (rs = 0.28, −0.24, 0.3 for mean pulmonary arterial pressure, cardiac index [CI], and pulmonary vascular resistance index, respectively). ECV_left significantly surpassed ECV_right (0.25 vs. 0.22, p < 0.001), with a greater ECV_left by > 0.05 indicating notably lower CI (p < 0.001). In 27 patients on PH medication, ECV_left effectively predicted medication intolerance (AUC = 0.84).

Conclusion

In CTEPH patients, hepatic ECV correlated with RHC metrics, where elevated left lobe ECV suggested reduced CI and potential medication intolerance.

Graphical Abstract

The hepatic extracellular volume fraction (ECV), measured via dual-energy CT, was notably higher in the left lobe compared to the right in patients with chronic thromboembolic pulmonary hypertension, with elevated ECV in the left lobe correlating with reduced cardiac index and intolerance to medication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CTEPH:

Chronic thromboembolic pulmonary hypertension

CI:

Cardiac index

ECV:

Extracellular volume fraction

DECT:

Dual-energy computed tomography

PH:

Pulmonary hypertension

RHC:

Right heart catheterization

LR:

Left-right

IQR:

Interquartile range

ROC:

Receiver operating characteristic curve

AUC:

Areas under the ROC

References

  1. Møller S, Bernardi M (2013) Interactions of the heart and the liver. Eur Heart J 34:2804–2811. https://doi.org/10.1093/eurheartj/eht246

    Article  PubMed  Google Scholar 

  2. Xanthopoulos A, Starling RC, Kitai T, Triposkiadis F (2019) Heart failure and liver disease: cardiohepatic interactions. JACC Heart Fail 7:87–97. https://doi.org/10.1016/j.jchf.2018.10.007

    Article  PubMed  Google Scholar 

  3. Rosenkranz S, Howard LS, Gomberg-Maitland M, Hoeper MM (2020) Systemic consequences of pulmonary hypertension and right-sided heart failure. Circulation 141:678–693. https://doi.org/10.1161/CIRCULATIONAHA.116.022362

    Article  PubMed  Google Scholar 

  4. Dai DF, Swanson PE, Krieger EV et al (2014) Congestive hepatic fibrosis score: a novel histologic assessment of clinical severity. Mod Pathol 27:1552–1558. https://doi.org/10.1038/modpathol.2014.79

    Article  PubMed  Google Scholar 

  5. Louie CY, Pham MX, Daugherty TJ et al (2015) The liver in heart failure: a biopsy and explant series of the histopathologic and laboratory findings with a particular focus on pre-cardiac transplant evaluation. Mod Pathol 28:932–943. https://doi.org/10.1038/modpathol.2015.40

    Article  PubMed  Google Scholar 

  6. Nickel NP, Galura GM, Zuckerman MJ et al (2021) Liver abnormalities in pulmonary arterial hypertension. Pulm Circ 11:1–12. https://doi.org/10.1177/20458940211054304

    Article  CAS  Google Scholar 

  7. Dolan RS, Stillman AE, Davarpanah AH (2022) Feasibility of hepatic T1-map** and extracellular volume quantification on routine cardiac magnetic resonance imaging in patients with infiltrative and systemic disorders. Acad Radiol 29:S100–S109. https://doi.org/10.1016/j.acra.2021.09.018

    Article  PubMed  Google Scholar 

  8. Guo J, Wang L, Wang J et al (2022) Prognostic value of hepatic native T1 and extracellular volume fraction in patients with pulmonary arterial hypertension. J Am Heart Assoc 11:e026254. https://doi.org/10.1161/JAHA.122.026254

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bogaert J, Claessen G, Dresselaers T et al (2022) Magnetic resonance relaxometry of the liver – a new imaging biomarker to assess right heart failure in pulmonary hypertension. J Heart Lung Transplant 41:86–94. https://doi.org/10.1016/j.healun.2021.09.005

    Article  PubMed  Google Scholar 

  10. Ramachandran P, Serai SD, Veldtman GR et al (2019) Assessment of liver T1 map** in fontan patients and its correlation with magnetic resonance elastography-derived liver stiffness. Abdom Radiol (NY) 44:2403–2408. https://doi.org/10.1007/s00261-019-01990-9

    Article  PubMed  Google Scholar 

  11. Sofue K, Tsurusaki M, Mileto A et al (2018) Dual-energy computed tomography for non-invasive staging of liver fibrosis: accuracy of iodine density measurements from contrast-enhanced data. Hepatol Res 48:1008–1019. https://doi.org/10.1111/hepr.13205

    Article  PubMed  Google Scholar 

  12. Marri UK, DasShalimar P et al (2021) Noninvasive staging of liver fibrosis using 5-minute delayed dual-energy CT: comparison with US elastography and correlation with histologic findings. Radiology 298:600–608. https://doi.org/10.1148/radiol.2021202232

    Article  PubMed  Google Scholar 

  13. Yoon JH, Lee JM, Kim JH et al (2021) Hepatic fibrosis grading with extracellular volume fraction from iodine map** in spectral liver CT. Eur J Radiol 137:109604. https://doi.org/10.1016/j.ejrad.2021.109604

    Article  PubMed  Google Scholar 

  14. Ozaki K, Ishida T, Ohtani T et al (2021) Assessing the progression of segmental fibrosis in chronic liver disease using extracellular volume fractions. Eur J Radiol 145:110033. https://doi.org/10.1016/j.ejrad.2021.110033

    Article  PubMed  Google Scholar 

  15. Swietlik EM, Ruggiero A, Fletcher AJ et al (2019) Limitations of resting haemodynamics in chronic thromboembolic disease without pulmonary hypertension. Eur Respir J 53:1801787. https://doi.org/10.1183/13993003.01787-2018

    Article  PubMed  Google Scholar 

  16. Humbert M, Kovacs G, Hoeper MM et al (2022) 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 43:3618–3731. https://doi.org/10.1093/eurheartj/ehac237

    Article  CAS  PubMed  Google Scholar 

  17. Ghofrani H-A, D’Armini AM, Grimminger F et al (2013) Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med 369:319–329. https://doi.org/10.1056/nejmoa1209657

    Article  CAS  PubMed  Google Scholar 

  18. van Thor MCJ, ten Klooster L, Snijder RJ et al (2019) Long-term clinical value and outcome of riociguat in chronic thromboembolic pulmonary hypertension. IJC Heart Vasc 22:163–168. https://doi.org/10.1016/j.ijcha.2019.02.004

    Article  Google Scholar 

  19. Hill NS, Rahaghi FF, Sood N et al (2017) Individual dose adjustment of riociguat in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Respir Med 129:124–129. https://doi.org/10.1016/j.rmed.2017.05.005

    Article  PubMed  Google Scholar 

  20. Higuchi S, Horinouchi H, Aoki T et al (2022) Balloon pulmonary angioplasty in the management of chronic thromboembolic pulmonary hypertension. Radiographics 42:1881–1896. https://doi.org/10.1148/rg.210102

    Article  PubMed  Google Scholar 

  21. Higuchi S, Ota H, Yaoita N et al (2023) Update on the roles of imaging in the management of chronic thromboembolic pulmonary hypertension. J Cardiol 81:297–306. https://doi.org/10.1016/j.jjcc.2022.03.001

    Article  PubMed  Google Scholar 

  22. Fukuda K, Date H, Doi S et al (2019) Guidelines for the treatment of pulmonary hypertension (JCS 2017/JPCPHS 2017). Circ J 83:842–945. https://doi.org/10.1253/circj.CJ-66-0158

    Article  PubMed  Google Scholar 

  23. Ghofrani HA, Hoeper MM, Halank M et al (2010) Riociguat for chronic thromboembolic pulmonary hypertension and pulmonary arterial hypertension: a phase II study. Eur Respir J 36:792–799. https://doi.org/10.1183/09031936.00182909

    Article  CAS  PubMed  Google Scholar 

  24. Frey R, Becker C, Unger S et al (2016) Assessment of the effects of hepatic impairment and smoking on the pharmacokinetics of a single oral dose of the soluble guanylate cyclase stimulator riociguat (BAY 63–2521). Pulm Circ 6:S5–S14. https://doi.org/10.1086/685015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Callan P, Clark AL (2016) Right heart catheterisation: indications and interpretation. Heart 102:147–157. https://doi.org/10.1136/heartjnl-2015-307786

    Article  CAS  PubMed  Google Scholar 

  26. Johnson PJ, Berhane S, Kagebayashi C et al (2015) Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol 33:550–558. https://doi.org/10.1200/JCO.2014.57.9151

    Article  PubMed  Google Scholar 

  27. Yoshihisa A, Kimishima Y, Kiko T et al (2018) Liver fibrosis marker, 7S domain of collagen type IV, in patients with pre-capillary pulmonary hypertension. Int J Cardiol 258:269–274. https://doi.org/10.1016/j.ijcard.2018.01.138

    Article  PubMed  Google Scholar 

  28. Taniguchi T, Ohtani T, Kioka H et al (2019) Liver stiffness reflecting right-sided filling pressure can predict adverse outcomes in patients with heart failure. JACC Cardiovasc Imaging 12:955–964. https://doi.org/10.1016/j.jcmg.2017.10.022

    Article  PubMed  Google Scholar 

  29. Dick BM (1928) “Stream-Lines” in the portal vein: their influence on the selective distribution of blood in the liver. Edinb Med J 35:533–539

    PubMed  PubMed Central  Google Scholar 

  30. Ozaki K, Kozaka K, Kosaka Y et al (2020) Morphometric changes and imaging findings of diffuse liver disease in relation to intrahepatic hemodynamics. Jpn J Radiol 38:833–852. https://doi.org/10.1007/s11604-020-00978-6

    Article  PubMed  Google Scholar 

  31. Yamasaki Y, Abe K, Kamitani T et al (2021) Right ventricular extracellular volume with dual-layer spectral detector CT: value in chronic thromboembolic pulmonary hypertension. Radiology 298:589–596. https://doi.org/10.1148/radiol.2020203719

    Article  PubMed  Google Scholar 

  32. Broncano J, Bhalla S, Gutierrez FR et al (2020) Cardiac MRI in pulmonary hyper-tension: from magnet to bedside. Radiographics 40:982–1002. https://doi.org/10.1148/rg.2020190179

    Article  PubMed  Google Scholar 

  33. Obmann VC, Berzigotti A, Catucci D et al (2021) T1 map** of the liver and the spleen in patients with liver fibrosis-does normalization to the blood pool increase the predictive value? Eur Radiol 31:4308–4318. https://doi.org/10.1007/s00330-020-07447-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank CT technologists Yuji Matsuzaki, Shun Okuyama, and Masaki Sakurai for their support in image acquisition and processing, and Editage (https://www.editage.jp/) for English language editing.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Tatsuya Nishii, Hiroki Horinouchi and Takara Namboku. The first draft of the manuscript was written by Tatsuya Nishii and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tatsuya Nishii.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This retrospective study was approved by the our Institutional Review Board (approval number: R19039-3).

Consent to participate

The requirement for obtaining written informed consent was waived due to the retrospective design of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11,174 KB)

Supplementary file2 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishii, T., Horinouchi, H., Namboku, T. et al. Laterality of CT-measured hepatic extracellular volume fraction in patients with chronic thromboembolic pulmonary hypertension. Int J Cardiovasc Imaging (2024). https://doi.org/10.1007/s10554-024-03119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10554-024-03119-6

Keywords

Navigation