Log in

CD14+ HLA-DR−/low MDSCs are elevated in the periphery of early-stage breast cancer patients and suppress autologous T cell proliferation

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Despite the recent expansion in the use of immunotherapy for many cancer types, it is still not a standard treatment for breast cancer. Identifying differences in the immune systems of breast cancer patients compared to healthy women might provide insight into potential targets for immunotherapy and thus may assist its clinical implementation.

Methods

Multi-colour flow cytometry was used to investigate myeloid and lymphoid populations in the peripheral blood of breast cancer patients (n = 40) and in the blood of healthy age-matched women (n = 25). We additionally performed functional testing to identify immune suppressive mechanisms used by circulating CD14+ myeloid cells from breast cancer patients.

Results

Our results show that breast cancer patients have significantly elevated frequencies of cells with the monocytic myeloid-derived suppressor cell (mMDSC) phenotype CD14+ HLA-DR−/low compared with healthy women (p < 0.01). We also observed higher levels of earlier differentiated T cells and correspondingly lower levels of T cells in later stages of differentiation (p < 0.05). These disease-associated differences could already be detected in early-stage breast cancer patients in stages 1 and 2 (n = 33 of 40) (p < 0.05). Levels of circulating T cells correlated with certain clinical features and with patient age (p < 0.05). Functional tests showed that CD14+ myeloid cells from breast cancer patients more potently suppressed autologous T cell proliferation than CD14+ cells from healthy women (p < 0.01). Subsequent investigation determined that suppression was mediated in part by reactive oxygen species, because inhibiting this pathway partially restored T cell proliferation (p < 0.01).

Conclusion

Our results highlight the potential importance of cells with mMDSC phenotypes in breast cancer, identifiable already at early stages of disease. This may provide a basis for identifying possible new therapeutic targets to enhance anti-cancer immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Breast cancer estimated incidence, mortality and prevalence worldwide in 2012. 2012. http://globocan.iarc.fr/old/FactSheets/cancers/breast-new.asp

  2. Aerts JG, Hegmans JP (2013) Tumor-specific cytotoxic T cells are crucial for efficacy of immunomodulatory antibodies in patients with lung cancer. Cancer Res 73(8):2381–2388. https://doi.org/10.1158/0008-5472.CAN-12-3932

    Article  CAS  PubMed  Google Scholar 

  3. Malas S, Harrasser M, Lacy KE, Karagiannis SN (2014) Antibody therapies for melanoma: new and emerging opportunities to activate immunity (Review). Oncol Rep 32(3):875–886. https://doi.org/10.3892/or.2014.3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L, Investigators K- (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028. https://doi.org/10.1056/NEJMoa1501824

    Article  PubMed  Google Scholar 

  5. Motzer RJ, Rini BI, McDermott DF, Redman BG, Kuzel TM, Harrison MR, Vaishampayan UN, Drabkin HA, George S, Logan TF, Margolin KA, Plimack ER, Lambert AM, Waxman IM, Hammers HJ (2015) Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol 33(13):1430–1437. https://doi.org/10.1200/JCO.2014.59.0703

    Article  CAS  PubMed  Google Scholar 

  6. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis P, Crown JP, Hitre E, de Azambuja E, Quinaux E, Di Leo A, Michiels S, Piccart MJ, Sotiriou C (2013) Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: big 02-98. J Clin Oncol 31(7):860–867. https://doi.org/10.1200/JCO.2011.41.0902

    Article  CAS  PubMed  Google Scholar 

  7. Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, Martino S, Wang M, Jones VE, Saphner TJ, Wolff AC, Wood WC, Davidson NE, Sledge GW, Sparano JA, Badve SS (2014) Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: eCOG 2197 and ECOG 1199. J Clin Oncol 32(27):2959–2966. https://doi.org/10.1200/JCO.2013.55.0491

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mittendorf EA, Clifton GT, Holmes JP, Schneble E, van Echo D, Ponniah S, and Peoples GE (2014) Final report of the phase I/II clinical trial of the E75 (nelipepimut-S) vaccine with booster inoculations to prevent disease recurrence in high-risk breast cancer patients. Ann Oncol 25(9):1735–1742. https://doi.org/10.1093/annonc/mdu211

    Article  PubMed  Google Scholar 

  9. Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, Pusztai L, Pathiraja K, Aktan G, Cheng JD, Karantza V, Buisseret L (2016) Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol 34(21):2460–2467. https://doi.org/10.1200/JCO.2015.64.8931

    Article  CAS  PubMed  Google Scholar 

  10. Emens L, Braiteh F, Cassier P, DeLord J, Eder J, Shen X, **ao Y, Wang Y, Hegde P, Chen D, Krop I (2015) Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer. Cancer Res. https://doi.org/10.1158/1538-7445

    Google Scholar 

  11. Domschke C, Schneeweiss A, Stefanovic S, Wallwiener M, Heil J, Rom J, Sohn C, Beckhove P, Schuetz F (2016) Cellular immune responses and immune escape mechanisms in breast cancer: determinants of immunotherapy. Breast Care (Basel). 11(2):102–107. https://doi.org/10.1159/000446061

    Article  PubMed  PubMed Central  Google Scholar 

  12. Baniyash M (2016) Myeloid-derived suppressor cells as intruders and targets: clinical implications in cancer therapy. Cancer Immunol Immunother 65(7):857–867. https://doi.org/10.1007/s00262-016-1849-y

    Article  PubMed  Google Scholar 

  13. Heine A, Schilling J, Grunwald B, Kruger A, Gevensleben H, Held SA, Garbi N, Kurts C, Brossart P, Knolle P, Diehl L, Hochst B (2016) The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib. Cancer Immunol Immunother 65(3):273–282. https://doi.org/10.1007/s00262-015-1790-5

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez PC, Ochoa AC (2008) Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 222:180–191. https://doi.org/10.1111/j.1600-065X.2008.00608.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462. https://doi.org/10.1016/j.cub.2014.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoshimura A, Muto G (2011) TGF-beta function in immune suppression. Curr Top Microbiol Immunol 350:127–147. https://doi.org/10.1007/82_2010_87

    CAS  PubMed  Google Scholar 

  17. Kortylewski M, Yu H (2008) Role of Stat3 in suppressing anti-tumor immunity. Curr Opin Immunol 20(2):228–233. https://doi.org/10.1016/j.coi.2008.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shipp C, Speigl L, Janssen N, Martens A, Pawelec G (2016) A clinical and biological perspective of human myeloid-derived suppressor cells in cancer. Cell Mol Life Sci 73(21):4043–4061. https://doi.org/10.1007/s00018-016-2278-y

    Article  CAS  PubMed  Google Scholar 

  19. Kalathil SG, Thanavala Y (2016) High immunosuppressive burden in cancer patients: a major hurdle for cancer immunotherapy. Cancer Immunol Immunother 65(7):813–819. https://doi.org/10.1007/s00262-016-1810-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58(1):49–59. https://doi.org/10.1007/s00262-008-0523-4

    Article  CAS  PubMed  Google Scholar 

  21. Choi J, Suh B, Ahn YO, Kim TM, Lee JO, Lee SH, Heo DS (2012) CD15 +/CD16low human granulocytes from terminal cancer patients: granulocytic myeloid-derived suppressor cells that have suppressive function. Tumour Biol 33(1):121–129. https://doi.org/10.1007/s13277-011-0254-6

    Article  CAS  PubMed  Google Scholar 

  22. Yu J, Wang Y, Yan F, Zhang P, Li H, Zhao H, Yan C, Yan F, Ren X (2014) Noncanonical NF-kappaB activation mediates STAT3-stimulated IDO upregulation in myeloid-derived suppressor cells in breast cancer. J Immunol. 193(5):2574–2586. https://doi.org/10.4049/jimmunol.1400833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Toor SM, Syed Khaja AS, El Salhat H, Faour I, Kanbar J, Quadri AA, Albashir M, Elkord E (2017) Myeloid cells in circulation and tumor microenvironment of breast cancer patients. Cancer Immunol Immunother. https://doi.org/10.1007/s00262-017-1977-z

    PubMed  PubMed Central  Google Scholar 

  24. Bergenfelz C, Larsson AM, von Stedingk K, Gruvberger-Saal S, Aaltonen K, Jansson S, Jernstrom H, Janols H, Wullt M, Bredberg A, Ryden L, Leandersson K (2015) Systemic monocytic-MDSCs are generated from monocytes and correlate with disease progression in breast cancer patients. PLoS ONE 10(5):e0127028. https://doi.org/10.1371/journal.pone.0127028

    Article  PubMed  PubMed Central  Google Scholar 

  25. Number stages of breast cancer. 2014 http://www.cancerresearchuk.org/about-cancer/breast-cancer/stages-types-grades/number-stages Accessed 2017 June

  26. Bailur JK, Gueckel B, Derhovanessian E, Pawelec G (2015) Presence of circulating Her2-reactive CD8 + T-cells is associated with lower frequencies of myeloid-derived suppressor cells and regulatory T cells, and better survival in older breast cancer patients. Breast Cancer Res 17:34. https://doi.org/10.1186/s13058-015-0541-z

    Article  PubMed  PubMed Central  Google Scholar 

  27. Larbi A, Cabreiro F, Zelba H, Marthandan S, Combet E, Friguet B, Petropoulos I, Barnett Y, Pawelec G (2010) Reduced oxygen tension results in reduced human T cell proliferation and increased intracellular oxidative damage and susceptibility to apoptosis upon activation. Free Radic Biol Med. 48(1):26–34. https://doi.org/10.1016/j.freeradbiomed.2009.09.025

    Article  CAS  PubMed  Google Scholar 

  28. Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R (2010) Immature immunosuppressive CD14 + HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70(11):4335–4345. https://doi.org/10.1158/0008-5472.CAN-09-3767

    Article  CAS  PubMed  Google Scholar 

  29. Boniface JD, Poschke I, Mao Y, Kiessling R (2012) Tumor-dependent down-regulation of the zeta-chain in T-cells is detectable in early breast cancer and correlates with immune cell function. Int J Cancer 131(1):129–139. https://doi.org/10.1002/ijc.26355

    Article  PubMed  Google Scholar 

  30. Poschke I, De Boniface J, Mao Y, Kiessling R (2012) Tumor-induced changes in the phenotype of blood-derived and tumor-associated T cells of early stage breast cancer patients. Int J Cancer 131(7):1611–1620. https://doi.org/10.1002/ijc.27410

    Article  CAS  PubMed  Google Scholar 

  31. Su Z, Ni P, She P, Liu Y, Richard SA, Xu W, Zhu H, Wang J (2017) Bio-HMGB1 from breast cancer contributes to M-MDSC differentiation from bone marrow progenitor cells and facilitates conversion of monocytes into MDSC-like cells. Cancer Immunol Immunother 66(3):391–401. https://doi.org/10.1007/s00262-016-1942-2

    Article  CAS  PubMed  Google Scholar 

  32. Ingold Heppner B, Untch M, Denkert C, Pfitzner BM, Lederer B, Schmitt W, Eidtmann H, Fasching PA, Tesch H, Solbach C, Rezai M, Zahm DM, Holms F, Glados M, Krabisch P, Heck E, Ober A, Lorenz P, Diebold K, Habeck JO, Loibl S (2016) Tumor-infiltrating lymphocytes: a predictive and prognostic biomarker in neoadjuvant-treated HER2-positive breast cancer. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-15-2338

    PubMed  Google Scholar 

  33. Menard S, Tomasic G, Casalini P, Balsari A, Pilotti S, Cascinelli N, Salvadori B, Colnaghi MI, Rilke F (1997) Lymphoid infiltration as a prognostic variable for early-onset breast carcinomas. Clin Cancer Res. 3(5):817–819

    CAS  PubMed  Google Scholar 

  34. Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, Prickett TD, Gartner JJ, Crystal JS, Roberts IM, Trebska-McGowan K, Wunderlich JR, Yang JC, Rosenberg SA (2016) Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med 22(4):433–438. https://doi.org/10.1038/nm.4051

    Article  CAS  PubMed  Google Scholar 

  35. Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L (2007) Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25(18):2546–2553. https://doi.org/10.1200/JCO.2006.08.5829

    Article  CAS  PubMed  Google Scholar 

  36. Mao Y, Sarhan D, Steven A, Seliger B, Kiessling R, Lundqvist A (2014) Inhibition of tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clin Cancer Res 20(15):4096–4106. https://doi.org/10.1158/1078-0432.CCR-14-0635

    Article  CAS  PubMed  Google Scholar 

  37. Vasquez-Dunddel D, Pan F, Zeng Q, Gorbounov M, Albesiano E, Fu J, Blosser RL, Tam AJ, Bruno T, Zhang H, Pardoll D, Kim Y (2013) STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest. 123(4):1580–1589. https://doi.org/10.1172/JCI60083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gros A, Turcotte S, Wunderlich JR, Ahmadzadeh M, Dudley ME, Rosenberg SA (2012) Myeloid cells obtained from the blood but not from the tumor can suppress T-cell proliferation in patients with melanoma. Clin Cancer Res 18(19):5212–5223. https://doi.org/10.1158/1078-0432.CCR-12-1108

    Article  CAS  PubMed  Google Scholar 

  39. Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X, Dietz AB (2010) Immunosuppressive CD14 + HLA-DRlow/- monocytes in prostate cancer. Prostate 70(4):443–455. https://doi.org/10.1002/pros.21078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arihara F, Mizukoshi E, Kitahara M, Takata Y, Arai K, Yamashita T, Nakamoto Y, Kaneko S (2013) Increase in CD14 + HLA-DR -/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol Immunother 62(8):1421–1430. https://doi.org/10.1007/s00262-013-1447-1

    Article  CAS  PubMed  Google Scholar 

  41. Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kubler H, Yancey D, Dahm P, Vieweg J (2008) Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res 14(24):8270–8278. https://doi.org/10.1158/1078-0432.CCR-08-0165

    Article  CAS  PubMed  Google Scholar 

  42. Mao Y, Poschke I, Wennerberg E, Pico de Coana Y, Egyhazi Brage S, Schultz I, Hansson J, Masucci G, Lundqvist A, Kiessling R (2013) Melanoma-educated CD14 + cells acquire a myeloid-derived suppressor cell phenotype through COX-2-dependent mechanisms. Cancer Res 73(13):3877–3887. https://doi.org/10.1158/0008-5472.CAN-12-4115

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the German Research Foundation (DFG Pa 361/22-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Shipp.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Ethical standards

The experiments comply with the current laws of the country in which they were performed.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speigl, L., Burow, H., Bailur, J.K. et al. CD14+ HLA-DR−/low MDSCs are elevated in the periphery of early-stage breast cancer patients and suppress autologous T cell proliferation. Breast Cancer Res Treat 168, 401–411 (2018). https://doi.org/10.1007/s10549-017-4594-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-017-4594-9

Keywords

Navigation