Log in

Anti-estrogenic mechanism of unliganded progesterone receptor isoform B in breast cancer cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Over half of breast cancer cases are estrogen-dependent and strategies to combat estrogen-dependent breast cancer have been to either block the activation of estrogen receptor (ER) or diminish the supply of estrogens. Our previous work documented that estrogen-independent expression of progesterone receptor (PR) in MCF-7 cells markedly disrupted the effects of estrogen. In this study, we have developed an adenovirus-mediated gene delivery system to study the specific involvement of PR isoform A (PR-A) and PR-B in the anti-estrogenic effect and its mechanism of action. The results revealed that PR-B, but not PR-A, exhibited distinct anti-estrogenic effect on E2-induced cell growth, gene expression, and ER-ERE interaction in a ligand-independent manner. The anti-estrogenic effect of PR-B was also associated with heightened metabolism and increased cellular uptake of estradiol-17β (E2). We have also found that the B-upstream segment of PR-B alone was able to inhibit E2-induced ER-ERE interaction and cellular uptake of E2. Although PR-A alone did not affect E2-induced ER activity, it antagonized the anti-estrogenic effect of PR-B in a concentration-dependent manner. The findings suggest an important mechanism of maintaining a favorable level of ER activity by PR-A and PR-B in estrogen target cells for optimal growth and differentiation. The potential anti-estrogenic mechanism of PR-B may be exploited for breast cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

E2:

Estradiol-17β

ER:

Estrogen receptor

ERE:

Estrogen response element

PR:

Progesterone receptor

PR-A:

PR isoform A

PR-B:

PR isoform B

Ad/Φ:

Control adenovirus

Ad/PRA:

Adenovirus carrying PR-A cDNA

Ad/PRB:

Adenovirus carrying PR-B cDNA

MCF-7-Ad/Φ:

MCF-7 cells infected with Ad/Φ

MCF-7-Ad/PRA:

MCF-7 cells infected with Ad/PRA

MCF-7-Ad/PRB:

MCF-7 cells infected with Ad/PRB

BUS:

B upstream segment

AF3:

Activation function 3

DBD:

DNA binding domain

VR:

Variable region

NLS:

Nuclear location signal

HPLC:

High performance liquid chromatography

aa:

Amino acid

MOI:

Multiplicity of infection

References

  1. Curtis Hewitt S, Couse JF, Korach KS (2000) Estrogen receptor transcription and transactivation: estrogen receptor knockout mice: what their phenotypes reveal about mechanisms of estrogen action. Breast Cancer Res 2:345–352

    Article  PubMed  CAS  Google Scholar 

  2. Conneely OM, Kettelberger DM, Tsai MJ, Schrader WT, O’Malley BW (1989) The chicken progesterone receptor A and B isoforms are products of an alternate translation initiation event. J Biol Chem 264:14062–14064

    PubMed  CAS  Google Scholar 

  3. Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, Chambon P (1990) Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. Embo J 9:1603–1614

    PubMed  CAS  Google Scholar 

  4. Takimoto GS, Tung L, Abdel-Hafiz H, Abel MG, Sartorius CA, Richer JK, Jacobsen BM, Bain DL, Horwitz KB (2003) Functional properties of the N-terminal region of progesterone receptors and their mechanistic relationship to structure. J Steroid Biochem Mol Biol 85:209–219

    Article  PubMed  CAS  Google Scholar 

  5. Shyamala G, Yang X, Silberstein G, Barcellos-Hoff MH, Dale E (1998) Transgenic mice carrying an imbalance in the native ratio of A to B forms of progesterone receptor exhibit developmental abnormalities in mammary glands. Proc Natl Acad Sci USA 95:696–701

    Article  PubMed  CAS  Google Scholar 

  6. Shyamala G, Louie SG, Camarillo IG, Talamantes F (1999) The progesterone receptor and its isoforms in mammary development. Mol Genet Metab 68:182–190

    Article  PubMed  CAS  Google Scholar 

  7. Clarke R, Liu MC, Bouker KB, Gu Z, Lee RY, Zhu Y, Skaar TC, Gomez B, O’Brien K, Wang Y et al (2003) Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene 22:7316–7339

    Article  PubMed  CAS  Google Scholar 

  8. Yager JD, Davidson NE (2006) Estrogen carcinogenesis in breast cancer. N Engl J Med 354:270–282

    Article  PubMed  CAS  Google Scholar 

  9. Skildum A, Faivre E, Lange CA (2005) Progesterone receptors induce cell cycle progression via activation of mitogen-activated protein kinases. Mol Endocrinol 19:327–339

    Article  PubMed  CAS  Google Scholar 

  10. Kalkhoven E, Kwakkenbos-Isbrucker L, de Laat SW, van der Saag PT, van der Burg B (1994) Synthetic progestins induce proliferation of breast tumor cell lines via the progesterone or estrogen receptor. Mol Cell Endocrinol 102:45–52

    Article  PubMed  CAS  Google Scholar 

  11. Groshong SD, Owen GI, Grimison B, Schauer IE, Todd MC, Langan TA, Sclafani RA, Lange CA, Horwitz KB (1997) Biphasic regulation of breast cancer cell growth by progesterone: role of the cyclin-dependent kinase inhibitors, p21 and p27(Kip1). Mol Endocrinol 11:1593–1607

    Article  PubMed  CAS  Google Scholar 

  12. Alkhalaf M, El-Mowafy A, Karam S (2002) Growth inhibition of MCF-7 human breast cancer cells by progesterone is associated with cell differentiation and phosphorylation of Akt protein. Eur J Cancer Prev 11:481–488

    Article  PubMed  CAS  Google Scholar 

  13. Lin VC, Ng EH, Aw SE, Tan MG, Chan VS, Ho GH (1999) Progestins inhibit the growth of MDA-MB-231 cells transfected with progesterone receptor complementary DNA. Clin Cancer Res 5:395–403

    PubMed  CAS  Google Scholar 

  14. Lin VC, Eng AS, Hen NE, Ng EH, Chowdhury SH (2001) Effect of progesterone on the invasive properties and tumor growth of progesterone receptor-transfected breast cancer cells MDA-MB-231. Clin Cancer Res 7:2880–2886

    PubMed  CAS  Google Scholar 

  15. Sedlacek SM (1988) An overview of megestrol acetate for the treatment of advanced breast cancer. Semin Oncol 15:3–13

    PubMed  CAS  Google Scholar 

  16. Bezwoda WR, Gudgeon A, Falkson G, Jordaan JP, Goedhals L (1998) Fadrozole versus megestrol acetate: a double-blind randomised trial in advanced breast cancer. Oncology 55:416–420

    Article  PubMed  CAS  Google Scholar 

  17. Giangrande PH, Kimbrel EA, Edwards DP, McDonnell DP (2000) The opposing transcriptional activities of the two isoforms of the human progesterone receptor are due to differential cofactor binding. Mol Cell Biol 20:3102–3115

    Article  PubMed  CAS  Google Scholar 

  18. Katzenellenbogen BS (2000) Mechanisms of action and cross-talk between estrogen receptor and progesterone receptor pathways. J Soc Gynecol Investig 7:S33–S37

    Article  PubMed  CAS  Google Scholar 

  19. Chalbos D, Galtier F (1994) Differential effect of forms A and B of human progesterone receptor on estradiol-dependent transcription. J Biol Chem 269:23007–23012

    PubMed  CAS  Google Scholar 

  20. Zheng ZY, Bay BH, Aw SE, Lin VC (2005) A novel antiestrogenic mechanism in progesterone receptor-transfected breast cancer cells. J Biol Chem 280:17480–17487

    Article  PubMed  CAS  Google Scholar 

  21. Mittereder N, March KL, Trapnell BC (1996) Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J Virol 70:7498–7509

    PubMed  CAS  Google Scholar 

  22. Dai D, Kumar NS, Wolf DM, Leslie KK (2001) Molecular tools to reestablish progestin control of endometrial cancer cell proliferation. Am J Obstet Gynecol 184:790–797

    Article  PubMed  CAS  Google Scholar 

  23. Cao S, Iyer JK, Lin V (2006) Identification of tetratricopeptide repeat domain 9, a hormonally regulated protein. Biochem Biophys Res Commun 345:310–317

    Article  PubMed  CAS  Google Scholar 

  24. Leo JC, Wang SM, Guo CH, Aw SE, Zhao Y, Li JM, Hui KM, Lin VC (2005) Gene regulation profile reveals consistent anticancer properties of progesterone in hormone-independent breast cancer cells transfected with progesterone receptor. Int J Cancer 117:561–568

    Article  PubMed  CAS  Google Scholar 

  25. Sheridan PL, Francis MD, Horwitz KB (1989) Synthesis of human progesterone receptors in T47D cells. Nascent A- and B-receptors are active without a phosphorylation-dependent post-translational maturation step. J Biol Chem 264:7054–7058

    PubMed  CAS  Google Scholar 

  26. Sartorius CA, Melville MY, Hovland AR, Tung L, Takimoto GS, Horwitz KB (1994) A third transactivation function (AF3) of human progesterone receptors located in the unique N-terminal segment of the B-isoform. Mol Endocrinol 8:1347–1360

    Article  PubMed  CAS  Google Scholar 

  27. Tung L, Mohamed MK, Hoeffler JP, Takimoto GS, Horwitz KB (1993) Antagonist-occupied human progesterone B-receptors activate transcription without binding to progesterone response elements and are dominantly inhibited by A-receptors. Mol Endocrinol 7:1256–1265

    Article  PubMed  CAS  Google Scholar 

  28. Vegeto E, Shahbaz MM, Wen DX, Goldman ME, O’Malley BW, McDonnell DP (1993) Human progesterone receptor A form is a cell- and promoter-specific repressor of human progesterone receptor B function. Mol Endocrinol 7:1244–1255

    Article  PubMed  CAS  Google Scholar 

  29. Pratt WB, Galigniana MD, Morishima Y, Murphy PJ (2004) Role of molecular chaperones in steroid receptor action. Essays Biochem 40:41–58

    PubMed  CAS  Google Scholar 

  30. DeFranco DB, Csermely P (2000) Steroid receptor and molecular chaperone encounters in the nucleus. Sci STKE 2000:PE1

    Article  PubMed  CAS  Google Scholar 

  31. Tetel MJ, Giangrande PH, Leonhardt SA, McDonnell DP, Edwards DP (1999) Hormone-dependent interaction between the amino- and carboxyl-terminal domains of progesterone receptor in vitro and in vivo. Mol Endocrinol 13:910–924

    Article  PubMed  CAS  Google Scholar 

  32. Tung L, Shen T, Abel MG, Powell RL, Takimoto GS, Sartorius CA, Horwitz KB (2001) Map** the unique activation function 3 in the progesterone B-receptor upstream segment. Two LXXLL motifs and a tryptophan residue are required for activity. J Biol Chem 276:39843–39851

    Article  PubMed  CAS  Google Scholar 

  33. Robyr D, Wolffe AP, Wahli W (2000) Nuclear hormone receptor coregulators in action: diversity for shared tasks. Mol Endocrinol 14:329–347

    Article  PubMed  CAS  Google Scholar 

  34. Ballare C, Uhrig M, Bechtold T, Sancho E, Di Domenico M, Migliaccio A, Auricchio F, Beato M (2003) Two domains of the progesterone receptor interact with the estrogen receptor and are required for progesterone activation of the c-Src/Erk pathway in mammalian cells. Mol Cell Biol 23:1994–2008

    Article  PubMed  CAS  Google Scholar 

  35. Dong X, Challis JR, Lye SJ (2004) Intramolecular interactions between the AF3 domain and the C-terminus of the human progesterone receptor are mediated through two LXXLL motifs. J Mol Endocrinol 32:843–857

    Article  PubMed  CAS  Google Scholar 

  36. Tung L, Abdel-Hafiz H, Shen T, Harvell DM, Nitao LK, Richer JK, Sartorius CA, Takimoto GS, Horwitz KB (2006) Progesterone Receptors (PR)-B and PR-A Regulate Transcription by Different Mechanisms: Af-3 Exerts Regulatory Control over Coactivator Binding to PR-B. Mol Endocrinol 20:2656–2670

    Article  PubMed  CAS  Google Scholar 

  37. Onate SA, Boonyaratanakornkit V, Spencer TE, Tsai SY, Tsai MJ, Edwards DP, O’Malley BW (1998) The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J Biol Chem 273:12101–12108

    Article  PubMed  CAS  Google Scholar 

  38. Graham JD, Yager ML, Hill HD, Byth K, O’Neill GM, Clarke CL (2005) Altered progesterone receptor isoform expression remodels progestin responsiveness of breast cancer cells. Mol Endocrinol 19:2713–2735

    Article  PubMed  CAS  Google Scholar 

  39. Sartorius CA, Shen T, Horwitz KB (2003) Progesterone receptors A and B differentially affect the growth of estrogen-dependent human breast tumor xenografts. Breast Cancer Res Treat 79:287–299

    Article  PubMed  CAS  Google Scholar 

  40. Weigel NL, Zhang Y (1998) Ligand-independent activation of steroid hormone receptors. J Mol Med 76:469–479

    Article  PubMed  CAS  Google Scholar 

  41. Jacobsen BM, Schittone SA, Richer JK, Horwitz KB (2005) Progesterone-independent effects of human progesterone receptors (PRs) in estrogen receptor-positive breast cancer: PR isoform-specific gene regulation and tumor biology. Mol Endocrinol 19:574–587

    Article  PubMed  CAS  Google Scholar 

  42. Thornton JW (2001) Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proc Natl Acad Sci USA 98:5671–5676

    Article  PubMed  CAS  Google Scholar 

  43. Thornton JW, Need E, Crews D (2003) Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science 301:1714–1717

    Article  PubMed  CAS  Google Scholar 

  44. Hopp TA, Weiss HL, Hilsenbeck SG, Cui Y, Allred DC, Horwitz KB, Fuqua SA (2004) Breast cancer patients with progesterone receptor PR-A-rich tumors have poorer disease-free survival rates. Clin Cancer Res 10:2751–2760

    Article  PubMed  CAS  Google Scholar 

  45. Sakaguchi H, Fujimoto J, Hong BL, Nakagawa Y, Tamaya T (2004) Drastic decrease of progesterone receptor form B but not A mRNA reflects poor patient prognosis in endometrial cancers. Gynecol Oncol 93:394–399

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Pierre Chambon from the Institute of Genetics and Molecular and Cellular Biology, Strasbourg, France, for providing the expression vectors hPR1 and hPR2, and Prof. Benita S. Katzenellenbogen, University of Illinois at Urbana-Champaign, Illinois, for providing the promoter interference constructs. This work is supported by Ministry of Education, Republic of Singapore (ARC/02) to Valerie C-L. Lin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie C-L Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, ZY., Zheng, SM., Bay, BH. et al. Anti-estrogenic mechanism of unliganded progesterone receptor isoform B in breast cancer cells. Breast Cancer Res Treat 110, 111–125 (2008). https://doi.org/10.1007/s10549-007-9711-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9711-8

Keywords

Navigation