Log in

Convergence Rates for an Adaptive Dual Weighted Residual Finite Element Algorithm

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Basic convergence rates are established for an adaptive algorithm based on the dual weighted residual error representation,

$$\mbox{error}= \sum_{\mbox{\tiny{elements}}}\mbox{error density}\times\mbox{mesh size}^{2+d},$$

applied to isoparametric d-linear quadrilateral finite element approximation of functionals of multi scale solutions to second order elliptic partial differential equations in bounded domains of ℝd. In contrast to the usual aim to derive an a posteriori error estimate, this work derives, as the mesh size tends to zero, a uniformly convergent error expansion for the error density, with computable leading order term. It is shown that the optimal adaptive isotropic mesh uses a number of elements proportional to the d/2 power of the \(L^{\frac{d}{d+2}}\) quasi-norm of the error density; the same error for approximation with a uniform mesh requires a number of elements proportional to the d/2 power of the larger L1 norm of the same error density. A point is that this measure recognizes different convergence rates for multi scale problems, although the convergence order may be the same. The main result is a proof that the adaptive algorithm based on successive subdivisions of elements reduces the maximal error indicator with a factor or stops with the error asymptotically bounded by the tolerance using the optimal number of elements, up to a problem independent factor. An important step is to prove uniform convergence of the expansion for the error density, which is based on localized averages of second order difference quotients of the primal and dual finite element solutions. The averages are used since the difference quotients themselves do not converge pointwise for adapted meshes. The proof uses weak convergence techniques with a symmetrizer for the second order difference quotients and a splitting of the error into a dominating contribution, from elements with no hanging nodes or edges on the initial mesh, and a remaining asymptotically negligible part. Numerical experiments for an elasticity problem with a crack and different variants of the averages show that the algorithm is useful in practice also for relatively large tolerances, much larger than the small tolerances needed to theoretically guarantee that the algorithm works well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, Comput. Methods Appl. Mech. Eng., 142 (1997), pp. 1–88.

  2. I. Babuška, J. Hugger, T. Strouboulis, K. Copps, and S. K. Gangaraj, The asymptotically optimal meshsize function for bi-p degree interpolation over rectangular elements, J. Comput. Appl. Math., 90 (1998), pp. 185–221.

    Google Scholar 

  3. I. Babuška, A. Miller, and M. Vogelius, Adaptive methods and error estimation for elliptic problems of structural mechanics, in Adaptive Computational Methods for Partial Differential Equations, pp. 57–73, SIAM, Philadelphia, PA, 1983.

  4. I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., 15 (1978), pp. 736–754.

  5. I. Babuška, T. Strouboulis, and S. K. Gangaraj, Guaranteed computable bounds for the exact error in the finite element solution. I. One dimensional model problem, Comput. Methods Appl. Mech. Eng., 176 (1999), pp. 51–79.

    Google Scholar 

  6. I. Babuška and M. Vogelius, Feedback and adaptive finite element solution of one-dimensional boundary value problems, Numer. Math., 44 (1984), pp. 75–102.

    Google Scholar 

  7. R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comput., 44 (1985), pp. 283–301.

    Google Scholar 

  8. N. S. Bakhvalov, On the optimality of linear methods for operator approximation in convex classes of functions, USSR Comput. Math. Math. Phys., 11 (1971), pp. 244–249.

  9. R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: Basic analysis and examples, East-West J. Numer. Math., 4 (1996), pp. 237–264.

  10. R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer., 10 (2001), pp. 1–102.

    Google Scholar 

  11. P. Binev, W. Dahmen, and R. DeVore, Adaptive finite element methods with convergence rates, Numer. Math., 97 (2004), pp. 219–268.

  12. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 15, Springer, New York, 1994.

  13. A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods for elliptic operator equations: Convergence rates, Math. Comput., 70 (2001), pp. 25–75.

    Google Scholar 

  14. F. Christian and G. Santos, A posteriori estimators for nonlinear elliptic partial differential equations, J. Comput. Appl. Math., 103 (1999), pp. 99–114.

    Google Scholar 

  15. R. A. DeVore, Nonlinear approximation, Acta Numer., 7 (1998), pp. 51–150.

  16. W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal., 33 (1996), pp. 1106–1124.

  17. H. Edelsbrunner and D. R. Grayson, Edgewise subdivision of a simplex, ACM Symposium on Computational Geometry, (Miami, FL, 1999), Discrete Comput. Geom., 24 (2000), pp. 707–719.

  18. K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive methods for differential equations, Acta Numer., 4 (1995), pp. 105–158.

  19. C. Johnson and A. Szepessy, Adaptive finite element methods for conservation laws based on a posteriori error estimates, Commun. Pure Appl. Math., 48 (1995), pp. 199–234.

    Google Scholar 

  20. L. Machiels, A. T. Patera, J. Peraire, and Y. Maday, A general framework for finite element a posteriori error control: application to linear and nonlinear convection-dominated problems, in Proceedings of ICFD Conference on Numerical Methods for Fluid Dynamics, Numerical Methods for Fluid Dynamics VI, Oxford, England, 1998, ISBN 0952492911.

  21. Y. Maday, A. T. Patera, and J. Peraire, A general formulation for a posteriori bounds for output functionals of partial differential equations; applications to the eigenvalue problem, C. R. Acad. Sci., Paris, Sér. I, Math., 328 (1999), pp. 823–828.

  22. K.-S. Moon, Adaptive algorithms for deterministic and stochastic differential equations, Doctoral thesis, ISBN 91-7283-553-2, Royal Institute of Technology, Stockholm, 2003, http://www.nada.kth.se/∼moon

  23. K.-S. Moon, A. Szepessy, R. Tempone, and G. E. Zouraris, Convergence rates for adaptive approximation of ordinary differential equations, Numer. Math., 96 (2003), pp. 99–129.

    Google Scholar 

  24. K.-S. Moon, A. Szepessy, R. Tempone, and G. E. Zouraris, Convergence rates for adaptive weak approximation of stochastic differential equations, Stoch. Anal. Appl., 23 (2005), pp. 511–558.

    Google Scholar 

  25. K.-S. Moon, A. Szepessy, R. Tempone, and G. E. Zouraris, Hyperbolic differential equations and adaptive numerics, in Theory and Numerics of Differential Equations, Durham 2000, J. F. Blowey, J. P. Coleman, and A. W. Craig, eds., Springer, Berlin, 2001.

  26. P. Morin, R. H. Nochetto, and K. G. Siebert, Convergence of adaptive finite element methods, SIAM Rev., 44 (2002), pp. 631–658. Revised reprint of “Data oscillation and convergence of adaptive FEM”, [SIAM J. Numer. Anal., 38 (2000), pp. 466–488]

    Google Scholar 

  27. R. Stevenson, An optimal adaptive finite element method, SIAM J. Numer. Anal., 42 (2005), pp. 2188–2217.

  28. A. Szepessy, R. Tempone, and G. E. Zouraris, Adaptive weak approximation of stochastic differential equations, Commun. Pure Appl. Math., 54 (2001), pp. 1169–1214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K.-S. Moon, E. von Schwerin, A. Szepessy or R. Tempone.

Additional information

AMS subject classification (2000)

65N12, 65N30, 65N50

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, KS., von Schwerin, E., Szepessy, A. et al. Convergence Rates for an Adaptive Dual Weighted Residual Finite Element Algorithm. Bit Numer Math 46, 367–407 (2006). https://doi.org/10.1007/s10543-006-0058-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-006-0058-z

Key words

Navigation