Log in

Characterization, genetic diversity, phylogenetic relationships, and expression of the aluminum tolerance MATE1 gene in Secale species

  • Original papers
  • Published:
Biologia Plantarum

Abstract

Aluminum (Al) is the main limiting factor for crop production in acidic soils. Efflux of organic acids is one of the mechanisms that determine Al-tolerance, and an Al-activated citrate transporter (multidrug and toxic compound extrusion) MATE1 gene is involved in different species. The contribution of the rye MATE1 gene (ScMATE1) depends on the rye (Secale cereale L.) cultivars and the crosses analyzed; there is no information about different rye species. The cDNA sequences, phylogenetic relationships, Al-tolerance, citrate exudation, and expression of the ScMATE1 gene were analyzed in several cultivars and wild species/subspecies of the Secale genus. Genotypes highly tolerant to Al were found within this genus. For the first time, sequences of the cDNA of the ScMATE1 gene were isolated and characterized in wild ryes. At least two copies of this gene were found likely to be related to Al-tolerance. The sequence comparison of 13 exons of ScMATE1 revealed variability between species, but also inter- and intra-cultivars. Variations were found in the Al-induced expression of ScMATE1 gene, as well as its contribution to Al-tolerance. The pattern of citrate exudation was inducible in most of the species/subspecies studied and constitutive in few. The phylogenetic analysis indicated that ScMATE1 is orthologue of two genes (HvMATE1 and TaMATE1) involved in the Al stress response in barley and wheat, respectively, but not orthologue of SbMATE, implicated in Al-tolerance in sorghum. ScMATE1 is involved in the response to Al stress in ryes, but its contribution to Al-tolerance is complex, and like in other species, there are tolerant and sensitive alleles in the different cultivars and species studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALMT:

Al-activated malate transporter

fd:

fold differences

MATE:

multidrug and toxic compound extrusion (Al-activated citrate transporter)

qPCR:

quantitative polymerase chain reaction

RT-PCR:

reverse transcription polymerase chain reaction

sqPCR:

semiquantitative PCR

References

  • Aniol, A., Gustafson, J.P.: Chromosome location of genes controlling aluminum tolerance in wheat, rye and triticale. — Can. J. Genet. Cytol. 26: 701–705, 1984.

    Article  Google Scholar 

  • Benito, C., Silva-Navas, J., Fontecha, G., Hernández-Riquer, M.V., Eguren, M., Salvador, N., Gallego, F.J.: From the rye Alt3 and Alt4 aluminum tolerance loci to orthologous genes in other cereals. — Plant Soil 327: 107–120, 2010.

    Article  CAS  Google Scholar 

  • Basu, U., Godbold, D., Taylor, G.J.: Aluminium resistance in Triticum aestivum L. associated with enhanced exudation of malate. — J. Plant Physiol. 144: 747–753, 1994.

    Article  CAS  Google Scholar 

  • Chikmawati, T., Skovmand, B., Gustafson, J.P.: Phylogenetic relationships among Secale species revealed by amplified fragment length polymorphisms. — Genome 48: 792–801, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Collins, N.C., Shirley, N.J., Saeed, M., Pallotta, M., Gustafson, J.P.: An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). — Genetics 179: 669–682, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras, R., Figueiras, A.M., Gallego, F.J., Benito, C.: Brachypodium distachyon: a model species for aluminium tolerance in Poaceae. — Funct. Plant Biol. 41: 1270–1283, 2014.

    Article  CAS  Google Scholar 

  • Cuadrado, A., Jouve, N.: Evolutionary trends of different repetitive DNA sequences during speciation in the genus Secale. — Amer. Genet. Assoc. 93: 339–345, 2002.

    CAS  Google Scholar 

  • Dagley, S.: Citrate: UV spectrophotometer determination. - In: Bergmeyer, H.U., Gawehn, K. (ed.): Methods of Enzymatic Analysis. 2nd English Ed. Pp. 1562–1565. Academic Press, New York 1974.

    Google Scholar 

  • De Bustos, A., Jouve, N.: Phylogenetic relationships of the genus Secale based on the characterization of rDNA ITS sequences. — Plant Syst. Evol. 235: 147–154, 2002.

    Article  Google Scholar 

  • Delhaize, E., Gruber, B.D., Ryan, P.R.: The roles of organic anion permeases in aluminium resistance and mineral nutrition. — FEBS Lett. 581: 2255–2262, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Delhaize, E., Ryan, P.R., Randall, P.J.: Aluminum tolerance in wheat (Triticum aestivum 1.) II. Aluminum-stimulated excretion of malic acid from root apices. — Plant Physiol. 103: 695–702, 1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, S., Tang, Z., Ren, Z., Zhang, H., Yan, B.: Isolation of ryespecific DNA fragment and genetic diversity analysis of rye genus Secale L. using wheat SSR markers. — J. Genet. 89: 489–492, 2010.

    Article  PubMed  Google Scholar 

  • Fujii, M., Yokosho, K., Yamaji, N., Saisho, D., Yamane, M., Takahashi, H., Sato, K., Nakazono, M., Ma, J.F.: Acquisition of aluminium tolerance by modification of a single gene in barley. — Nat. Commun. 3: 713, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontecha, G., Silva-Navas, J., Benito, C., Mestres, M.A., Espino, F.J., Hernández-Riquer, M.V., Gallego, F.J.: Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). — Theor. appl. Genet. 114: 249–260, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa, J., Yamaji, N., Wang, H., Mitani, N., Murata, Y., Sato, K., Katsuhara, M., Takeda, K., Ma, J.F.: An aluminum-activated citrate transporter in barley. — Plant Cell Physiol. 48: 1081–1091, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Gale, M.D., Devos, K.M.: Comparative genetics in the grasses. — Proc. nat. Acad. Sci. USA 95: 1971–1974, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego, F.J., Benito, C.: Genetic control of aluminium tolerance in rye (Secale cereale L.). — Theor. appl. Genet. 95: 393–399, 1997.

    Article  CAS  Google Scholar 

  • Hoekenga, O., Magalhães, J.: Mechanisms of aluminum tolerance. - In: Oliveira, A.C., Varshney, R. (ed.): Root Genomics. Pp. 133–153. Springer-Verlag, Berlin - Heidelberg 2011.

    Chapter  Google Scholar 

  • Iuchi, S., Koyama, H., Iuchi, A., Kobayashi, Y., Kitabayashi, S., Ikka, T., Hirayama, T., Shinozaki, K., Kobayashi, M.: Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. — Proc. nat. Acad. Sci. USA 104: 9900–9905, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khush, G.S.: Cytogenetic and evolutionary studies in Secale, II. Interrelationships in the wild species. — Evolution 16: 484–496, 1962.

    Article  Google Scholar 

  • Li, X.F., Ma, J.F., Matsumoto, H.P.C.: Pattern of aluminuminduced secretion of organic acids differs between rye and wheat. — Plant Physiol. 123: 1537–1543, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Librado, P., Rozas, J.: DnaSP v5.1: a software for comprehensive analysis of DNA polymorphism data. — Bioinformatics 25: 1451–1452, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Magalhães, J.V., Shaff, J., Kochian, L.V.: Aluminumactivated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. — Plant J. 57: 389–399, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Ma, J.F., Nagao, S., Sato, K., Ito, H., Furukawa, J., Takeda, K.: Molecular map** of a gene responsible for Al-activated secretion of citrate in barley. — J. exp. Bot. 55: 1335–1341, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Ma, J.F., Zheng, S.J., Matsumoto, H.: Specific secretion of citric acid induced by Al Stress in Cassia tora L. — Plant Cell Physiol. 38: 1019–1025, 1997.

    Article  CAS  Google Scholar 

  • Magalhães, J.V., Liu, J., Guimaraes, C.T., Lana, U.G.P., Alves, V.M.C., Wang, Y.H., Schaffert, R.E., Hoekenga, O.A., Piñeros, M.A., Shaff, J.E., Klein, P.E., Carneiro, N.P., Coelho, C.M., Trick, H.N., Kochian, L.V.: A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. — Nat. Genet. 39: 1156–1161, 2007.

    Article  PubMed  Google Scholar 

  • Maron, L.G., Guimarães, C.T., Kirst, M., Albert, P.S., Birchler, J.A., Bradbury, P.J., Buckler, E.S., Coluccio, A.E., Danilova, T.V., Kudrna, D., Magalhães, J.V., Piñeros, M.A., Schatz, M.C., Wing, R.A., Kochian, L.V.: Aluminum tolerance in maize is associated with higher MATE1 gene copy number. — Proc. nat. Acad. Sci. USA 110: 5241–5246, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maron, L.G., Piñeros, M.A., Guimarães, C.T., Magalhães, J.V., Pleiman, J.K., Mao, C., Shaff, J., Belicuas, S.N.J., Kochian, L.V.: Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. — Plant J. 61: 728–740, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Matos, M., Camacho, M.V., Pérez-Flores, V., Pernaute, B., Pinto-Carnide, O., Benito, C.: A new aluminum tolerance gene located on rye chromosome arm 7RS. — Theor. appl. Genet. 111: 360–369, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Naranjo, T., Roca, A., Goicoechea, P.G., Giráldez, R.: Arm homoeology of wheat and rye chromosomes. — Genome 29: 873–882, 1987.

    Article  Google Scholar 

  • Pinto-Carnide, O., Guedes-Pinto, H.: Aluminium tolerance variability in rye and wheat Portuguese germplasm. — Genet. Resour. Crop Evol. 46: 81–85, 1999.

    Article  Google Scholar 

  • Ren, T.H., Chen, F., Zou, Y.T., Jia, Y.H., Zhang, H.Q., Yan, B.J., Ren, Z.L.: Evolutionary trends of microsatellites during the speciation process and phylogenetic relationships within the genus Secale. — Genome 54: 316–326, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, P.R., Tyerman, S.D., Sasaki, T., Furuichi, T., Yamamoto, Y., Zhang, W.H., Delhaize, E.: The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. — J. exp. Bot. 62: 9–2, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, P.R., Raman, H., Gupta, S., Horst, W.J., Delhaize, E.: A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. — Plant Physiol. 149: 340–351, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki, T., Yamamoto, Y., Ezaki, B., Katsuhara, M., Ahn, S.J., Ryan, P.R., Delhaize, E., Matsumoto, H.: A wheat gene encoding an aluminium-activated malate transporter. — Plant J. 37: 645–653, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Santos, E., Matos, M., Silva, P., Figueiras, A.M., Benito, C., Pinto-Carnide, O.: Molecular diversity and genetic relationships in Secale. — J. Genet. 95: 273–281, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Shang, H.Y., Wei, Y.M., Wang, X.R., Zheng, Y.L.: Genetic diversity and phylogenetic relationships in the rye genus Secale L. based on Secale cereale microsatellite markers. — Genet. mol. Biol. 29: 685–691, 2006.

    Article  CAS  Google Scholar 

  • Silva, S., Santos, C., Matos, M., Pinto-Carnide, O.: Al toxicity mechanism in tolerant and sensitive rye genotypes. — Environ. exp. Bot. 75: 89–97, 2012.

    Article  CAS  Google Scholar 

  • Silva-Navas, J., Benito, C., Téllez-Robledo, B., El-Moneim, D.A., Gallego, F.J.: The ScAACT1 gene at the Q alt5 locus as a candidate for increased aluminum tolerance in rye (Secale cereale L.). — Mol. Breed. 30: 845–856, 2012.

    Article  CAS  Google Scholar 

  • Stutz, H.C.: On the origin of cultivated rye. — Amer. J. Bot. 59: 59–70, 1972.

    Article  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., Kumar, S.: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. — Mol. Biol. Evol. 24: 1596–1599, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Tovkach, A., Ryan, P.R., Richardson, A.E., Lewis, D.C., Rathjen, T.M., Ramesh, S., Tyerman, S.D., Delhaize, E.: Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices. — Plant Physiol. 161: 880–892, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Van der Heijden, R.T., Snel, B., Van Noort, V., Huynen, M.A.: Orthology prediction at scalable resolution by phylogenetic tree analysis. — BMC Bioinformatics 8: 83, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vences, F.J., Vaquero, E., Perez de la Vega, M.: Phylogenetic relationships in Secale (Poaceae): an isozymatic study. — PIant Syst. Evol. 157: 33–47, 1987.

    Article  Google Scholar 

  • Wang, J.P., Raman, H., Zhou, M.X., Ryan, P.R., Delhaize, E., Hebb, D.M., Coombes, N., Mendham, N.: High-resolution map** of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). — Theor. appl. Genet. 115: 265–276, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Yamaji, N., Huang, C.F., Nagao, S., Yano, M., Sato, Y., Nagamura, Y., Ma, J.F.: A zinc finger transcription factor art1 regulates multiple genes implicated in aluminum tolerance in rice. — Plant Cell 21: 3339–3349, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokosho, K., Yamaji, N., Fujii-Kashino, M., Ma, J.F.: Functional analysis of a MATE gene OsFRDL 2 revealed its involvement in Al-induced secretion of citrate, but a lower contribution to Al tolerance in rice. — Plant Cell Physiol. 57: 976–985, 2016.

    Article  CAS  PubMed  Google Scholar 

  • Yokosho, K., Yamaji, N., Ma, J.F.: An Al-inducible MATE gene is involved in external detoxification of Al in rice. — Plant J. 68: 1061–1069, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Yokosho, K., Yamaji, N., Ma, J.F.: Isolation and characterisation of two MATE genes in rye. — Funct. Plant Biol. 37: 296–303, 2010.

    Article  CAS  Google Scholar 

  • Zhou, J., Yang, Z., Li, G., Liu, C., Tang, Z., Zhang, Y., Ren, Z.: Diversified chromosomal distribution of tandemly repeated sequences revealed evolutionary trends in Secale (Poaceae). — Plant Syst. Evol. 287: 49–57, 2010.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Matos.

Additional information

Acknowledgements: This work was supported by research grants AGL 2008-03049/AGR from the Ministerio de Educación y Ciencia de España, PR34/07-1581 from the Santander/Complutense, Acción Integrada España-Portugal (PT2009-0096 y E-171/10) and a PHD grant from the Fundação para a Ciência e Tecnologia de Portugal (SFRH/ BD/ 65040/ 2009). J. Silva-Navas was a recipient of the Contratos de Personal Investigador de Apoyo (Comunidad de Madrid).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, E., Benito, C., Silva-Navas, J. et al. Characterization, genetic diversity, phylogenetic relationships, and expression of the aluminum tolerance MATE1 gene in Secale species. Biol Plant 62, 109–120 (2018). https://doi.org/10.1007/s10535-017-0749-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-017-0749-0

Additional key words

Navigation