Log in

Biodegradable plastics: mechanisms of degradation and generated bio microplastic impact on soil health

  • Review Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Conventional petroleum-derived polymers are valued for their versatility and are widely used, owing to their characteristics such as cost-effectiveness, diverse physical and chemical qualities, lower molecular weight, and easy processability for large-scale production. However, the extensive accumulation of such plastics leads to serious environmental issues. To combat this existing situation, an alternative lies in the production of bioplastics from natural and renewable sources such as plants, animals, microbes, etc. Bioplastics obtained from renewable sources are compostable and susceptible to degradation caused by microbes hydrolyzing to CO2, CH4, and biomass. Also, certain additives are reinforced into the bioplastic films to improve their physicochemical properties and degradation rate. However, on degradation, the bio-microplastic (BM) produced could have positive as well as negative impact on the soil health. This article thus focuses on the degradation of various fossil based as well as bio based biodegradable plastics such as polyhydroxyalkanoates (PHA), polyhydroxy butyrate (PHB), polylactic acid (PLA), polybutylene succinate (PBS), polycaprolactone (PCL), and polysaccharide derived bioplastics by mechanical, thermal, photodegradation and microbial approaches. The degradation mechanism of each approach has been discussed in detailed for different bioplastics. How the incorporation or reinforcement of various additives in the biodegradable plastics effects their degradation rates has also been discussed. In addition to that, the impact of generated bio-microplastic on physicochemical properties of soil such as pH, bulk density, carbon, nitrogen content etc. and biological properties such as on genome of native soil microbes and on plant nutritional health have been discussed in detailed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

Download references

Acknowledgements

The author acknowledges the Ministry of Education, Govt. of India, and Dr. B. R Ambedkar National Institute of Technology Jalandhar Punjab, India for supporting work.

Funding

No financial support has been provided for this work.

Author information

Authors and Affiliations

Authors

Contributions

RK has drafted and written the manuscript. IC has contributed to the review of the article and finalized the submission of the article.

Corresponding author

Correspondence to Indu Chauhan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Chauhan, I. Biodegradable plastics: mechanisms of degradation and generated bio microplastic impact on soil health. Biodegradation (2024). https://doi.org/10.1007/s10532-024-10092-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10532-024-10092-3

Keywords

Navigation