Log in

Predicting the patterns of plant species distribution under changing climate in major biogeographic zones of mainland India

  • Original Research
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Conservation efforts have traditionally focused on biodiversity hotspots, overlooking the essential ecological roles and ecosystem services provided by cold spots, the regions that harbour relatively low species diversity. In this study, we used a novel plant species database aggregated at 1˚ grid resolution to predict present and future plant species distribution in major cold spot biogeographic zones of India: Desert, Semi-Arid, Deccan Peninsula, and Gangetic Plain. We employed multiple models: Generalized Linear Model, Generalized Boosted Model, Random Forest, Support Vector Machine, and their ensemble. The results demonstrated reasonable predictive ability, with water and energy variables dominating in all the zones, showing a strong agreement with the field based data. Temperature annual range, annual precipitation, and precipitation of the driest month significantly influenced (r > 0.4) plant species patterns in the Desert and Semi-Arid zone. The ensemble model output improved predictive ability, with reduced root mean square error and enhanced correlation (r = 0.8). Other environmental variables (topography: elevation, and Human Influence Index) showed high correlation in combination with water and energy variables in the Deccan Peninsula. Continuous species loss is anticipated under future climate scenarios across all the zones. Semi-Arid is expected to see the most significant increase, with 69% and 52.5% of grids gaining species in 2050 (RCP4.5) and 69% and 84.7% in 2070 (RCP8.6), mainly attributed to an average precipitation increase. However, the Deccan Peninsula and Gangetic Plain show varying trends from 2050 to 2070, emphasizing the complex interplay of environmental factors influencing biodiversity distribution and dynamics. Our study provides insights into the species richness, potential and future distribution of cold spots in the major Indian biogeographic zones, aligning with climate-driven patterns. Our findings suggest that the ensemble modelling predictions are more accurate than individual models, emphasizing its potential for conservation efforts under rapidly changing climate. The study can provide a guiding tool for develo** spatial biodiversity approach in the study region for prioritizing conservation in the face of climate change and help meet sustainable development goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amundson R, Chadwick O, Sowers J (1989) A comparison of soil climate and biological activity along an elevation gradient in the eastern Mojave Desert. Oecologia 80:395–400

    Article  CAS  PubMed  Google Scholar 

  • Bauman D, Fortunel C, Delhaye G, Malhi Y, Cernusak LA, Bentley LP, Rifai SW, Aguirre-Gutiérrez J, Menor IO, Phillips OL, McNellis BE (2022) Tropical tree mortality has increased with rising atmospheric water stress. Nature 608(7923):528–533

    Article  CAS  PubMed  Google Scholar 

  • Balvanera P, Quijas S, Pérez-Jiménez A (2011) Distribution patterns of tropical dry forest trees along a mesoscale water availability gradient. Biotropica 43(4):414–422

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15(4):365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatt JR, Das A, Shanker K (eds) (2018) Biodiversity and climate change: an Indian perspective. Ministry of environment, forest and climate change, government of India, New Delhi, India

    Google Scholar 

  • Biber MF, Voskamp A, Niamir A, Hickler T, Hof C (2019) A comparison of macroecological and stacked species distribution models to predict future global terrestrial vertebrate richness. J Biogeogr 47(1):114–129

    Article  Google Scholar 

  • Chitale VS, Behera MD, Roy PS (2014) Future of endemic flora of biodiversity hotspots in India. PLoS One 9(12):e115264

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke A (2007) Climate and diversity: the role of history. In: Storch D, Marquet PA, Brown JH (eds) Scaling biodiversity. Cambridge, Cambridge University Press, pp 225–245

  • Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan JF, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O’Brien E, Turner JRG (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol Lett 7(12):1121–1134

    Article  Google Scholar 

  • Currie DJ (2007) Regional-to-global patterns of biodiversity, and what they have to say about mechanisms. In: Storch D, et al (eds) Scaling biodiversity. Cambridge Univ. Press, pp 258–282

  • Dieleman JA, Verstappen FW, Kuiper D (1998) Root temperature effects on growth and bud break of Rosa hybrida in relation to cytokinin concentrations in xylem sap. Sci Hortic 76(3):183–192

    Article  CAS  Google Scholar 

  • Dolezal J, Dvorsky M, Kopecky M, Liancourt P, Hiiesalu I, Macek M, Altman J, Chlumska Z, Rehakova K, Capkova K, Borovec J (2016) Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci Rep 6(1):24881. https://doi.org/10.1038/srep24881

  • Dormann CF, Schymanski SJ, Cabral J, Chuine I, Graham C, Hartig F, Kearney M, Morin X, Römermann C, Schröder B, Singer A (2012) Correlation and process in species distribution models: bridging a dichotomy. J Biogeogr 39(12):2119–2131

    Article  Google Scholar 

  • Dubuis A, Pottier J, Rion V, Pellissier L, Theurillat JP, Guisan A (2011) Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modeling approaches. Divers Distrib 17(6):1122–1131

    Article  Google Scholar 

  • ERAIndia (2022). Ecoregion profile: East Deccan moist deciduous forests. Version 1.1. Ecological restoration alliance, India, pp 15

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudı M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-pereira R, Schapire RE, Williams S, Wisz MS, Zimmermann NE, Dudik M, Soberon J (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Fensham RJ, Fairfax RJ, Dwyer JM (2010) Vegetation responses to the first 20 years of cattle grazing in an Australian desert. Ecology 91(3):681–692

    Article  CAS  PubMed  Google Scholar 

  • Field R, O’Brien EM, Whittaker RJ (2005) Global models for predicting woody plant richness from climate: development and evaluation. Ecology 86:2263–2277

    Article  Google Scholar 

  • Grace JB, Harrison S, Damschen EI (2011) Local richness along gradients in the Siskiyou herb flora: R. H. Whittaker revisited. Ecology 92:108–120

    Article  PubMed  Google Scholar 

  • Grantham HS, Duncan A, Evans TD, Jones KR, Beyer HL, Schuster R, Walston J, Ray JC, Robinson JG, Callow M, Clements T (2020) Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat Commun 11(1):5978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grenouillet G, Buisson L, Casajus N, Lek S (2011) Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34:9–17

    Article  Google Scholar 

  • Guisan A, Rahbek C (2011) SESAM–a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J Biogeogr 38(8):1433–1444

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8(9):993–1009

    Article  PubMed  Google Scholar 

  • Gundimeda H, Sukhdev P, Sinha RK, Sanyal S (2007) Natural resource accounting for Indian states—Illustrating the case of forest resources. Ecol Econ 61(4):635–649

    Article  Google Scholar 

  • Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84(12):3105–3117

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD (2011) Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim Change 109(1–2):117

    Article  Google Scholar 

  • Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services IPBES (2019) Review of the effectiveness of the administrative and scientific functions of the platform. https://files.ipbes.net/ipbes-web-prod-public-files/ipbes-7-5_en_review.pdf

  • IPCC (2014) Climate change 2014 synthesis report. IPCC, Geneva, Szwitzerland, pp 1059–1072

    Google Scholar 

  • Kareiva P, Marvier M (2003) Conserving biodiversity coldspots recent calls to direct conservation funding to the world’s biodiversity hotspots may be bad investment advice. Am Sci 91(4):344–351

    Article  Google Scholar 

  • Keddy PA (1992) Assembly and response rules – 2 goals for predictive community ecology. J Veg Sci 3:157–164

    Article  Google Scholar 

  • Kuhn M (2014) Futility analysis in the cross-validation of machine learning models. https://arxiv.org/pdf/1405.6974.

  • McRoberts RE, Tomppo EO, Finley AO, Heikkinen J (2007) Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery. Remote Sens Environ 111(4):466–480

    Article  Google Scholar 

  • Miranda JD, Padilla FM, Pugnaire FI (2009) Response of a Mediterranean semiarid community to changing patterns of water supply. Perspect Plant Ecol Evol Syst 11(4):255–266

    Article  Google Scholar 

  • Morrone JJ (2009) Evolutionary biogeography: an integrative approach with case studies. Columbia University Press, New York

    Google Scholar 

  • Moser D, Dullinger S, Englisch T, Niklfeld H, Plutzar C, Sauberer N, Zechmeister HG, Grabherr G (2005) Environmental determinants of vascular plant species richness in the Austrian Alps. J Biogeogr 32(7):1117–1127

    Article  Google Scholar 

  • Moeslund JE, Zlinszky A, Ejrnæs R, Brunbjerg AK, Bøcher PK, Svenning JC, Normand S (2019) LIDAR explains diversity of plants, fungi, lichens and bryophytes across multiple habitats and large geographic extent. Ecol Appl 29:e01907

    Article  PubMed  PubMed Central  Google Scholar 

  • Nobel PS (2009) Physicochemical and environmental plant physiology, 4th edn. Elsevier, London (ISBN 978-0-12-374143-1)

    Google Scholar 

  • O’Brien EM (1998) Water–energy dynamics, climate, and prediction of woody plant species richness: an interim general model. J Biogeogr 25:379–398

    Article  Google Scholar 

  • O’Donnell MS, and Ignizio DA (2012) Bioclimatic predictors for supporting ecological applications in the conterminous United States. U.S. Geological Survey Data Series 691, p 10

  • Otero I, Farrell KN, Pueyo S, Kallis G, Kehoe L, Haberl H, Plutzar C, Hobson P, García-Márquez J, Rodríguez-Labajos B, Martin JL (2020) Biodiversity policy beyond economic growth. Conserv Lett 13(4):12713

    Article  Google Scholar 

  • Padal SB, Rao JP, Naidu MT, Rao DS, Rao MS, Prameela R, Aruna K (2009) Some important Pteridophytes from Eastern Ghats of northern Andhra Pradesh, India. J Nat Conserv 21(2):287–294

    Google Scholar 

  • Patidar N, Das P, Tripathi P, Behera MD (2022) Covariation between LULC change and hydrological balance in River Basin Scale. In: Pandey A, Chowdary VM, Behera MD, Singh VP (eds) Geospatial technologies for land and water resources management. Springer International Publishing, Cham, pp 279–294

    Chapter  Google Scholar 

  • Pearson RG, Thuiller W, Araújo MB, Martínez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711

    Article  Google Scholar 

  • Pineda E, Lobo JM (2009) Assessing the accuracy of species distribution models to predict amphibian species richness patterns. J Anim Ecol 78(1):182–190

    Article  PubMed  Google Scholar 

  • Premavani D, Naidu MT, Venkaiah M (2014) Tree species diversity and population structure in the tropical forests of north central Eastern Ghats, India. Not Sci Biol 6(4):448

    Article  Google Scholar 

  • Prieto P, Penuelas J, Llusia J, Asensio D, Estiarte M (2009) Effects of experimental warming and drought on biomass accumulation in a Mediterranean shrub land. Plant Ecol 205:179–191

    Article  Google Scholar 

  • Rather ZA, Ahmad R, Khuroo AA (2022) Ensemble modelling enables identification of suitable sites for habitat restoration of threatened biodiversity under climate change: a case study of Himalayan Trillium. Ecol Eng 176:106534

    Article  Google Scholar 

  • Reddy CS, Dutta K, Jha CS (2013) Analyzing the gross and net deforestation rates in India. Curr Sci 105:1492–1500. https://www.researchgate.net/publication/259181451_Analysing_the_gross_and_net_deforestation_rates_in_India

  • Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7(1):1–15

    Article  Google Scholar 

  • Robinson TM, La Pierre KJ, Vadeboncoeur MA, Byrne KM, Thomey ML, Colby SE (2013) Seasonal, not annual precipitation drives community productivity across ecosystems. Oikos 122(5):727–738

    Article  Google Scholar 

  • Rodgers WA, Panwar HS (1988) Planning a wildlife protected area network in India, vol 2. Project FO: IND/82/003, FAO, Dehradun, India, p 339

  • Roy PS, Ramachandran RM, Paul O, Thakur PK, Ravan S, Behera MD, Sarangi C, Kanawade VP (2022) Anthropogenic land use and land cover changes—a review on its environmental consequences and climate change. J Indian Soc Remote Sens 50(8):1615–1640

    Article  Google Scholar 

  • Roy PS, Behera MD, Murthy MSR, Roy A, Singh S, Kushwaha SPS, Jha CS, Sudhakar S, Joshi PK, Reddy CS, Gupta S et al (2015) New vegetation type map of India prepared using satellite remote sensing: comparison with global vegetation maps and utilities. Int J Appl Earth Obs Geoinf 39:142–159

    Google Scholar 

  • Roy PS, Kushwaha SPS, Murthy MSR, Roy A, Kushwaha D, Reddy CS, Behera MD, Mathur VB, Padalia H, Saran S, Singh S, Jha CS, Porwal MC (2012) Biodiversity characterisation at landscape level: national assessment,Indian institute of remote sensing, Dehradun, India, p 140. https://www.researchgate.net/publication/262372416_Biodiversity_Characterisation_at_Landscape_Level_National_Assessment

  • Sarvade S, Gupta B, Singh M (2016) Composition, diversity, and distribution of tree species in response to changing soil properties with increasing distance from the water source–a case study of Gobind Sagar Reservoir in India. J Mt Sci 13(3):522

    Article  Google Scholar 

  • Semwal RL (2005) The Terai Arc landscape in India, securing protected areas in the face of global change. WWF-India, New Delhi, p 47. https://portals.iucn.org/library/sites/library/files/documents/2005-023.pdf

  • Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PloS One 7(5):e36741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sironen S, Kangas A, Maltamo M (2009) Comparison of different non-parametric growth imputation methods in the presence of correlated observations. Forestry 83(1):39–51

    Article  Google Scholar 

  • Stamp LD (1961) A history of land use in arid regions. Book. Arid zone research, XVII series, 11 edn. UNESCO, (Paris)

  • Stevens GC (1989) The latitudinal gradient in the geographical range: how so many species coexist in the tropics. Am Nat 133(2):240–256

    Article  Google Scholar 

  • Suh MS, Oh SG, Lee DK, Cha DH, Choi SJ, ** CS, Hong SY (2012) Development of new ensemble methods based on the performance skills of regional climate models over South Korea. J Clim 25(20):7067–82

    Article  Google Scholar 

  • Tan ZX, Lal R, Smeck NE, Calhoun FG (2004) Relationships between surface soil organic carbon pool and site variables. Geoderma 121(3):187–195

    Article  CAS  Google Scholar 

  • Telwala Y, Brook BW, Manish K, Pandit MK (2013) Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicenter. PLoS One 8(2):e57103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian H, Banger K, Bo T, Dadhwal VK (2014) History of land use in India during 1880–2010: Large-scale land transformations reconstructed from satellite data and historical archives. Global Planet Change 121:78–88

    Article  Google Scholar 

  • Tripathi P, Behera MD, Roy PS (2017) Optimized grid representation of plant species richness in India—utility of an existing national database in integrated ecological analysis. PLoS One 12(3):e0173774

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi P, Behera MD, Roy PS (2019) Spatial heterogeneity of climate explains plant richness distribution at the regional scale in India. PloS One 14(6):e0218322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon R (2007) A comparative evaluation of presence-only methods for modeling species distribution. Divers Distrib 13:397–405

    Article  Google Scholar 

  • Upadhye AS (2016) Varying rainfall threatens biodiversity in Western Ghats. Indian Climate Dialogue. News blog. http://indiaclimatedialogue.net/2016/03/21/varying-rainfall-threatens-biodiversity-western-ghats/

  • Wang Z, Brown JH, Tang Z, Fang J (2009) Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America. Proc Natl Acad Sci 106(32):13388–13392

  • Wilmott CJ (1981) On the validation of models. Phys Geogr 2(2):184–194. https://doi.org/10.1080/02723646.1981.106422

    Article  Google Scholar 

  • Wilson TB, Witkowski ETF (1998) Water requirements for germination and early seedling establishment in four African savanna woody plant species. J Arid Environ 38(4):541–550

    Article  Google Scholar 

  • Wilson KA, Underwood EC, Morrison SA, Klausmeyer KR, Murdoch WW, Reyers B, Wardell-Johnson G, Marquet PA, Rundel PW, McBride MF, Pressey RL (2007) Conserving biodiversity efficiently: what to do, where, and when. PLoS Biol 5(9):e223

    Article  PubMed  PubMed Central  Google Scholar 

  • Wohlgemuth T, Moser B, Brändli UB, Kull P, Schütz M (2008) Diversity of forest plant species at the community and landscape scales in Switzerland. Plant Biosyst Int J Dealing Aspects Plant Biol 142(3):604–613

    Google Scholar 

  • Yadav RR, Negi PS, Singh J (2021). Climate change and plant biodiversity in Himalaya, India. Proc Indian Natl Sci Acad 87:234-59

  • Zeuner FE (1950) Stone age and pleistocene chronology in Gujarat. Deccan College monograph series, vol 6. Deccan College post-graduate and research institute

  • Zhang Y-B, Ma K-P (2008) Geographic distribution patterns and status assessment of threatened plants in China. Biodivers Conserv 17:1783–1798

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

PT: Inception of the research idea, methodology development, research work, manuscript draft; MDB: Review and draft; PSR: Review.

Corresponding author

Correspondence to Poonam Tripathi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Anzar Khuroo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, P., Behera, M.D. & Roy, P.S. Predicting the patterns of plant species distribution under changing climate in major biogeographic zones of mainland India. Biodivers Conserv (2024). https://doi.org/10.1007/s10531-024-02868-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10531-024-02868-z

Keywords

Navigation