Log in

Xenon-Induced Recovery of Functional Activity of Pulmonary Surfactant (In Silico Study)

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

A Correction to this article was published on 01 January 2024

This article has been updated

To understand the nature of xenon-induced recovery of the functional activity of pulmonary surfactant during inhalation of a gas mixture of Xe/O2, the mechanisms of the ongoing processes were studied in silico. Impaired ability of pulmonary surfactant to maintain low surface tension preventing alveolar atelectasis occurs due to formation of aggregates of its phospholipids and a decrease in their lateral mobility. Aggregated lipid systems, whose structure can explain the loss of lateral mobility of surfactant phospholipids, were modeled in silico at the molecular level. Changes in the Gibbs energy and enthalpy in the reactions of the formation and decomposition of xenon intermediates with model systems of various compositions/structures were calculated. The simulation was carried out for atomic xenon and for xenon polarized by molecular oxygen in the gas phase and taking into account solvation with water. The loss of lateral mobility of phospholipids can be explained by specific features of electronic structure of hydrophobic hydrocarbon molecules (acyl chains), which, under certain conditions, are capable of forming structured common regions of the electrostatic potential, to which xenon has an affinity. In this case, inclusion coordination compounds of the “guest—host” type are formed, which subsequently decompose due to the nature of the polarization of the Xe atoms. The formation and decomposition of xenon intermediates in these systems lead to recovery of the lateral mobility (fluidity) of phospholipids, which restores functional activity of surfactant films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Hussain M, Khurram Syed S, Fatima M, Shaukat S, Saadullah M, Alqahtani AM, Alqahtani T, Bin Emran T, Alamri AH, Barkat MQ, Wu X. Acute Respiratory Distress Syndrome and COVID-19: A Literature Review. J. Inflamm. Res. 2021;14:7225-7242. doi: https://doi.org/10.2147/JIR.S334043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang S, Li Z, Wang X, Zhang S, Gao P, Shi Z. The role of pulmonary surfactants in the treatment of acute respiratory distress syndrome in COVID-19. Front. Pharmacol. 2021;12:698905. doi: https://doi.org/10.3389/fphar.2021.698905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Echaide M, Autilio C, Arroyo R, Perez-Gil J. Restoring pulmonary surfactant membranes and films at the respiratory surface. Biochim. Biophys. Acta Biomembr. 2017;1859(9, Pt B):1725-1739. doi: https://doi.org/10.1016/j.bbamem.2017.03.015

  4. Perez-Gil J, Weaver TE. Pulmonary surfactant pathophysiology: current models and open questions. Physiology (Bethesda). 2010;25(3):132-141. doi: https://doi.org/10.1152/physiol.00006.2010

    Article  CAS  PubMed  Google Scholar 

  5. Rizzo AN, Haeger SM, Oshima K, Yang Y, Wallbank AM, ** Y, Lettau M, McCaig LA, Wickersham NE, McNeil JB, Zakharevich I, McMurtry SA, Langouët-Astrié CJ, Kopf KW, Voelker DR, Hansen KC, Shaver CM, Kerchberger VE, Peterson RA, Kuebler WM, Ochs M, Veldhuizen RA, Smith BJ, Ware LB, Bastarache JA, Schmidt EP. Alveolar epithelial glycocalyx degradation mediates surfactant dysfunction and contributes to acute respiratory distress syndrome. JCI Insight. 2022;7(2):e154573. doi: https://doi.org/10.1172/jci.insight.154573

    Article  PubMed  PubMed Central  Google Scholar 

  6. Knudsen L, Ochs M. The micromechanics of lung alveoli: structure and function of surfactant and tissue components. Histochem. Cell Biol. 2018;150(6):661-676. doi: https://doi.org/10.1007/s00418-018-1747-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ochs M, Hegermann J, Lopez-Rodriguez E, Timm S, Nouailles G, Matuszak J, Simmons S, Witzenrath M, Kuebler WM. On top of the alveolar epithelium: surfactant and the glycocalyx. Int. J. Mol. Sci. 2020;21(9):3075. doi: https://doi.org/10.3390/ijms21093075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Udut VV, Naumov SA, Evtushenko DN, Udut EV, Naumov SS, Zyuz’kov GN. A case of xenon inhalation therapy for respiratory failure and neuropsychiatric disorders associated with COVID-19. EXCLI J. 2021;20:1517-1525. doi: https://doi.org/10.17179/excli2021-4316

  9. Udut VV, Naumov SA, Udut EV, Naumov SS, Evtushenko DN, Chumakova ON, Zyuz’kov GN. Mechanisms of the effects of short-term inhalations of Xe and O2 gas mixture in the rehabilitation of post-COVID ventilation failure. Bull. Exp. Biol. Med. 2022;172(3):364-367. doi: https://doi.org/10.1007/s10517-022-05393-7

  10. Rosenberg OA. Lung surfactant and its use in lung diseases. Obshch. Reanimatol. 2007;3(1):66-77. Russian. doi: https://doi.org/10.15360/1813-9779-2007-1-66-77

  11. Ishutsina OV. The surfactant system of the lungs. a review article. Vestn. Vitebsk. Gos. Med. Univ. 2021;20(4):7-17. Russian. doi: https://doi.org/10.22263/2312-4156.2021.4.7

  12. Pérez-Gil J. Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions. Biochim. Biophys Acta. 2008;1778(7-8):1676-95. doi: https://doi.org/10.1016/j.bbamem.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  13. Bobrov MF, Tsirelson VG. Chemical bonding in the complexes XEF5+XF6(X=P, AS, SB, BI). Russ. J. Coordinat. Chem. 2005;31(10):746-756. doi: https://doi.org/10.1007/s11173-005-0158-3

    Article  CAS  Google Scholar 

  14. Mazej Z. Noble-gas chemistry more than half a century after the first report of the noble-gas compound. Molecules. 2020;25(13):3014. doi: https://doi.org/10.3390/molecules25133014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Frontera A. Noble gas bonding interactions involving xenon oxides and fluorides. Molecules. 2020;25(15):3419. doi: https://doi.org/10.3390/molecules25153419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Joseph AI, Lapidus SH, Kane CM, Holman KT. Extreme Confinement of Xenon by Cryptophane-111 in the solid state. Angew Chem. Int. Ed. Engl. 2015;54(5):1471-1475. doi: https://doi.org/10.1002/anie.201409415

    Article  CAS  PubMed  Google Scholar 

  17. Enright GD, Udachin KA, Moudrakovski IL, Ripmeester JA. Thermally programmable gas storage and release in single crystals of an organic van der Waals host. J. Am. Chem. Soc. 2003;125(33):9896-9897. doi: https://doi.org/10.1021/ja0351701

    Article  CAS  PubMed  Google Scholar 

  18. Dunning TH Jr, Hay PJ. Gaussian Basis Sets for Molecular Calculations. Modern Thetoretical Chemistry. Schaefer HF III, ed. New York, 1977. Vol. 3. P. 1-28.

  19. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations — potentials for the transition-metal atoms Sc to Hg. J. Chem. Phys. 1985;82(1):270-283. doi:https://doi.org/10.1063/1.448799

    Article  CAS  ADS  Google Scholar 

  20. Wadt WR, Hay PJ. Ab initio effective core potentials for molecular calculations — potentials for main group elements Na to Bi. J. Chem. Phys. 1985;82(1):284-298. doi: https://doi.org/10.1063/1.448800

    Article  CAS  ADS  Google Scholar 

  21. Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations — potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985;82(1):299-310. doi: https://doi.org/10.1063/1.448975

    Article  CAS  ADS  Google Scholar 

  22. Barone V. Characterization of the potential energy surface of the HO2 molecular system by a density functional approach. J. Chem. Phys. 1994;101:10 666-10 676. doi: https://doi.org/10.1063/1.467880

  23. Barone V, Cossi M, Tomasi J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J. Chem. Phys. 1997;107:3210-3221. doi: https://doi.org/10.1063/1.474671

    Article  CAS  ADS  Google Scholar 

  24. Barone V, Cossi M, Tomasi J. Geometry optimization of molecular structures in solution by the polarizable continuum model. J. Comp. Chem. 1998;19(4):404-417. doi: https://doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W

    Article  CAS  Google Scholar 

  25. Dennington R, Keith TA, Millam JM. GaussView 6.0. 16. Semichem Inc., 2016.

  26. Keating E, Zuo YY, Tadayyon SM, Petersen NO, Possmayer F, Veldhuizen RA. A modified squeeze-out mechanism for generating high surface pressures with pulmonary surfactant. Biochim. Biophys. Acta. 2012;1818(5):1225-1234. doi: https://doi.org/10.1016/j.bbamem.2011.12.007

    Article  CAS  PubMed  Google Scholar 

  27. Booker RD, Sum AK. Biophysical changes induced by xenon on phospholipid bilayers. Biochim. Biophys. Acta. 2013;1828(5):1347-1356. doi: https://doi.org/10.1016/j.bbamem.2013.01.016

    Article  CAS  PubMed  Google Scholar 

  28. Enright GD, Udachin KA, Moudrakovski IL, Ripmeester JA. CCDC 221010: Experimental Crystal Structure Determination. Unknown Publisher, 2004. doi: https://doi.org/10.5517/cc7dzcy

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Evtushenko.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 3, pp. 176-183, September, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evtushenko, D.N., Fateev, A.V., Naumov, S.A. et al. Xenon-Induced Recovery of Functional Activity of Pulmonary Surfactant (In Silico Study). Bull Exp Biol Med 176, 260–267 (2023). https://doi.org/10.1007/s10517-024-06006-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-024-06006-1

Keywords

Navigation