Log in

Analysis of the Effect of Neuroprotectors That Reduce the Level of Degeneration of Neurons in the Rat Hippocampus Caused by Administration of Beta-Amyloid Peptide Aβ25-35

  • BIOPHYSICS AND BIOCHEMISTRY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Deposition of beta-amyloid peptide in the brain observed in Alzheimer’s disease contributes to the development of cognitive deficits. We studied the abilities of different neuroprotectors to prevent or reduce degeneration of hippocampal neurons in rat brain 14 and 45 days after single intrahippocampal injection of beta-amyloid peptide 25-35 (Aβ25-35). Cytological analysis of the neurons of the hippocampal CA1 and CA3 fields showed predominant damage to CA1 neurons in 14 days and CA3 neurons in 45 days after Aβ25-35 administration. Single preliminary administrations of neuroprotectors fullerene C60FWS (antioxidant), neuromedin (nonselective inhibitor of acetylcholinesterase), and AM404 (activator of the endocannabinoid system) largely prevented neurodegeneration of neurons. Fullerene produced the most pronounced protective effect, which can be explained by its ability to prevent aggregation of proteins and destroy Aβ25-35 fibrils. The combined use of these neuroprotectors can provide the basis for the development of new approaches to prevention and treatment of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Damulin IV, Zhivolupov SA, Zaitsev OS, Maksimova MYu, Markin SP, Samartsev IN, Sanadze AG, Strokov IA. Neuromedin in Clinical Practice. Moscow, 2016. Russian.

  2. Fernández-Cabello S, Kronbichler M, Van Dijk KRA, Goodman JA, Spreng RN, Schmitz TW; Alzheimer’s Disease Neuroimaging Initiative. Basal forebrain volume reliably predicts the cortical spread of Alzheimer’s degeneration. Brain. 2020;143(3):993-1009. doi: https://doi.org/10.1093/brain/awaa012

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gordon R, Podolski I, Makarova E, Deev A, Mugantseva E, Khutsyan S, Sengpiel F, Murashev A, Vorobyov V. Intrahippocampal pathways involved in learning/memory mechanisms are affected by intracerebral infusions of amyloid-β25-35 peptide and hydrated fullerene C60 in rats. J. Alzheimers Dis. 2017;58(3):711-724. doi: https://doi.org/10.3233/JAD-161182

    Article  CAS  PubMed  Google Scholar 

  4. Grothe M, Heinsen H, Teipel SJ. Atrophy of the cholinergic Basal forebrain over the adult age range and in early stages of Alzheimer’s disease. Biol. Psychiatry. 2012;71(9):805-813. doi: https://doi.org/10.1016/j.biopsych.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  5. **no S. Topographic differences in adult neurogenesis in the mouse hippocampus: a stereology-based study using endogenous markers. Hippocampus. 2011;21(5):467-480. doi: https://doi.org/10.1002/hipo.20762

    Article  PubMed  Google Scholar 

  6. Llorens-Martín M, Blazquez-Llorca L, Benavides-Piccione R, Rabano A, Hernandez F, Avila J, DeFelipe J. Selective alterations of neurons and circuits related to early memory loss in Alzheimer’s disease. Front. Neuroanat. 2014;8:38. doi: https://doi.org/10.3389/fnana.2014.00038

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lothmann K, Deitersen J, Zilles K, Amunts K, Herold C. New boundaries and dissociation of the mouse hippocampus along the dorsal-ventral axis based on glutamatergic, GABAergic and catecholaminergic receptor densities. Hippocampus. 2021;31(1):56-78. doi: https://doi.org/10.1002/hipo.23262

    Article  CAS  PubMed  Google Scholar 

  8. Makarova EG, Gordon RY, Podolski IY. Fullerene C60 prevents neurotoxicity induced by intrahippocampal microinjection of amyloid-beta peptide. J. Nanosci. Nanotechnol. 2012;12(1):119-126. doi: https://doi.org/10.1166/jnn.2012.5709

    Article  CAS  PubMed  Google Scholar 

  9. Nelson AR, Kolasa K, McMahon LL. Noradrenergic sympathetic sprouting and cholinergic reinnervation maintains non-amyloidogenic processing of AβPP. J. Alzheimers Dis. 2014;38(4):867-879. doi: https://doi.org/10.3233/JAD-130608

    Article  PubMed  PubMed Central  Google Scholar 

  10. Páez JA, Campillo NE. Innovative therapeutic potential of cannabinoid receptors as targets in Alzheimer’s disease and less well-known diseases. Curr. Med. Chem. 2019;26(18):3300-3340. doi: https://doi.org/10.2174/0929867325666180226095132

    Article  CAS  PubMed  Google Scholar 

  11. Podolski IY, Podlubnaya ZA, Kosenko EA, Mugantseva EA, Makarova EG, Marsagishvili LG, Shpagina MD, Kaminsky YG, Andrievsky GV, Klochkov VK. Effects of hydrated forms of C60 fullerene on amyloid 1-peptide fibrillization in vitro and performance of the cognitive task. J. Nanosci. Nanotechnol. 2007;7(4-5):1479-1485. doi: https://doi.org/10.1166/jnn.2007.330

    Article  CAS  PubMed  Google Scholar 

  12. Scheiderer CL, McCutchen E, Thacker EE, Kolasa K, Ward MK, Parsons D, Harrell LE, Dobrunz LE, McMahon LL. Sympathetic sprouting drives hippocampal cholinergic reinnervation that prevents loss of a muscarinic receptor-dependent long-term depression at CA3-CA1 synapses. J. Neurosci. 2006;26(14):3745-3756. doi: https://doi.org/10.1523/JNEUROSCI.5507-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shankar GM, Walsh DM. Alzheimer’s disease: synaptic dysfunction and Aβ. Mol. Neurodegeneration. 2009;4:48. doi: https://doi.org/10.1186/1750-1326-4-48.

    Article  CAS  Google Scholar 

  14. Talarico G, Trebbastoni A, Bruno G, de Lena C. Modulation of the cannabinoid system: a new perspective for the treatment of the Alzheimer’s disease. Curr. Neuropharmacol. 2019;17(2):176-183. doi: https://doi.org/10.2174/1570159X16666180702144644

    Article  CAS  PubMed  Google Scholar 

  15. Yeung JHY, Palpagama TH, Tate WP, Peppercorn K, Waldvogel HJ, Faull RLM, Kwakowsky A. The acute effects of amyloid-beta 1-42 on glutamatergic receptor and transporter expression in the mouse hippocampus. Front. Neurosci. 2020;13:1427. doi: https://doi.org/10.3389/fnins.2019.01427

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ya. Gordon.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 172, No. 10, pp. 452-458, October, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordon, R.Y., Makarova, E.G., Mugantseva, E.A. et al. Analysis of the Effect of Neuroprotectors That Reduce the Level of Degeneration of Neurons in the Rat Hippocampus Caused by Administration of Beta-Amyloid Peptide Aβ25-35. Bull Exp Biol Med 172, 441–446 (2022). https://doi.org/10.1007/s10517-022-05410-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-022-05410-9

Key Words

Navigation