Log in

Effect of Oligochitosan on Experimental Venous Thrombosis in Guinea Pigs

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Oligochitosan Сh10/85 with a molecular weight of 10 kDa and a deacetylation degree of 85% prevented the development of experimental venous thrombosis in guinea pigs after intravenous administration in a dose of 30 mg/kg. In a concentration of 0.005-0.5 mg/ml, oligochitosan Ch10/85 did not provoke hemolysis of human red blood cells in in vitro experiments. The antithrombotic effect of oligochitosan Ch10/85 that exhibits low anticoagulant activity (by two orders of magnitude lower than that of unfractionated heparin) can be associated with inhibition of platelet aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Il’ina AV, Varlamov VP. Determination of residual protein and endotoxins in chitosan (review). Appl. Biochem. Microbiol. 2016;52(5):471-475. doi: https://doi.org/10.1134/S0003683816050082

    Article  CAS  Google Scholar 

  2. Makarov VA, Spasov AA, Plotnikov MB, Belozerskaya GG, Vasil’eva TM, Drozd NN, Svistunov AA, Kucheryavenko AF, Malykhina LS, Naumenko LV, Nevedrova OE, Petrukhina GN, Aliev OI, Plotnikova TM. Methodical recommendations for the study of drugs affecting hemostasis. Manual for Preclinical Studies of New Pharmacological Substances. Part I, Mironov AN, ed. Moscow, 2012. P. 453-479. Russian.

  3. Khasanova LM, Il’ina AV, Varlamov VP, Sinitsyna OA, Sinitsyn AP. Hydrolysis of chitozan with an enzyme complex from Myceliophthora sp. Appl. Biochem. Microbiol. 2014;50(4):381-386. doi: https://doi.org/10.1134/S0003683814040061

    Article  CAS  Google Scholar 

  4. Cao S, He X, Qin L, He M, Yang Y, Liu Z, Mao W. Anticoagulant and Antithrombotic Properties in Vitro and in Vivo of a Novel Sulfated Polysaccharide from Marine Green Alga Monostroma nitidum. Mar. Drugs. 2019;17(4):247. doi: https://doi.org/10.3390/md17040247

    Article  CAS  PubMed Central  Google Scholar 

  5. Carvalhal F, Cristelo RR, Resende DISP, Pinto MMM, Sousa E, Correia-da-Silva M. Antithrombotics from the Sea: Polysaccharides and Beyond. Mar. Drugs. 2019;17(3):170. doi: https://doi.org/10.3390/md17030170]

    Article  CAS  PubMed Central  Google Scholar 

  6. Dash BC, Réthoré G, Monaghan M, Fitzgerald K, Gallagher W, Pandit A. The influence of size and charge of chitosan/polyglutamic acid hollow spheres on cellular internalization, viability and blood compatibility. Biomaterials. 2010;31(32):8188- 8197. doi: https://doi.org/10.1016/j.biomaterials.2010.07.067

    Article  CAS  PubMed  Google Scholar 

  7. Drozd NN, Shagdarova BT, Zhuikova YV, Il’ina AV, Varlamov VP, Vasiliev MN, Vasilieva TM, Hein AM. Thromboresistant silicon plates modified with chitosan and heparin by the layer-by-layer assembly method. Progress Chem. Application Chitin Its Derivatives. 2019;24:5-22. doi: https://doi.org/10.15259/PCACD.24.001

    Article  CAS  Google Scholar 

  8. Frontroth JP, Favaloro EJ. Ristocetin-Induced Platelet Aggregation (RIPA) and RIPA Mixing Studies. Methods Mol. Biol. 2017;1646:473-494. doi: https://doi.org/10.1007/978-1-4939-7196-1_35

    Article  CAS  PubMed  Google Scholar 

  9. Hahn D, Bae JS. Recent Progress in the Discovery of Bioactive Components from Edible Natural Sources with Antithrombotic Activity. J. Med. Food. 2019;22(2):109-120. doi: https://doi.org/10.1089/jmf.2018.4268

    Article  PubMed  Google Scholar 

  10. Le Quellec S, Bordet JC, Negrier C, Dargaud Y. Comparison of current platelet functional tests for the assessment of aspirin and clopidogrel response. A review of the literature. Thromb. Haemost. 2016;116(4):638-650. doi: https://doi.org/10.1160/TH15-11-0870

    Article  PubMed  Google Scholar 

  11. Leebeek FW, Eikenboom JC. Von Willebrand’s Disease. N. Engl. J. Med. 2016;375(21):2067-2080. doi: https://doi.org/10.1056/NEJMra1601561

    Article  CAS  PubMed  Google Scholar 

  12. Liu X, Hao J, Shan X, Zhang X, Zhao X, Li Q, Wang X, Cai C, Li G, Yu G. Antithrombotic activities of fucosylated chondroitin sulfates and their depolymerized fragments from two sea cucumbers. Carbohydr. Polym. 2016;152:343-350. doi: https://doi.org/10.1016/j.carbpol.2016.06.106

    Article  CAS  PubMed  Google Scholar 

  13. Ustyuzhanina NE, Bilan MI, Dmitrenok AS, Shashkov AS, Kusaykin MI, Stonik VA, Nifantiev NE, Usov AI. Structure and biological activity of a fucosylated chondroitin sulfate from the sea cucumber Cucumaria japonica. Glycobiology. 2016;26(5):449-459. doi: https://doi.org/10.1093/glycob/cwv119

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Drozd.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 172, No. 7, pp. 42-47, July, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozd, N.N., Il’ina, A., Shagdarova, B.T. et al. Effect of Oligochitosan on Experimental Venous Thrombosis in Guinea Pigs. Bull Exp Biol Med 172, 33–37 (2021). https://doi.org/10.1007/s10517-021-05325-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-021-05325-x

Key Words

Navigation