Log in

Environmental stress tolerance and immune response for the small abalone hybrids

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Recently, mass mortality affected the cultured small abalone, Haliotis diversicolor diversicolor, which was the dominant cultured abalone species in southern China. Prior studies revealed that survivorship varied significantly between different stocks and crosses. However, the immunological basis for differences in susceptibility has not been well understood to date. Herein, low temperature, air exposure tolerance tests, and pull-off force measurement were assessed in the three groups (Japan, Taiwan, and their Hybrid stock). The results showed that the critical thermal minimum (CTMin) at 50% was 15.6 °C for the Taiwan stock, 12.1 °C for the Japan stock, and 13.2 °C for the Hybrid stock. Upon air exposure challenge, 100% abalones from the Taiwan group died after 8 h at 24 °C, while the survival rate in the Japan and Hybrid groups were 37.8% and 29.4%, respectively. The detachment stress for the Japan group was 42.3 kPa, which was 2.78-fold and 1.43-fold higher compared to the Taiwan and Hybrid groups, respectively. Variation in susceptibility to disease may be based on the effectiveness of the innate immune responses. Therefore, total hemocyte count, phagocytosis, respiratory burst, superoxide dismutase activity, acid phosphatase activity, alkaline phosphatase activity, and myeloperoxidase activity were determined for the healthy abalones in each group. Positive mid-parent heterosis on immunological parameters was consistent with the prior knowledge on the positive mid-parent heterosis for survival rate, which indicated the improvement on immune reaction and disease resistance through hybridization methods. The current study will be useful in efficient design of breeding programs for the development of sustainable abalone aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CTMin:

Critical thermal minimum

ROS:

Reactive oxygen species

ACP:

Acid phosphatase

ALP:

Alkaline phosphatase

SOD:

Superoxide dismutase

WLR:

Weight loss rate

THC:

Total hemocyte count

FL1 :

First fluorescence

PP:

Phagocytic rate

DCFH-DA:

2′,7′-Dichlorfluorescein diacetate

DCFH:

Dichlorofluorescein

DCF:

2′,7′-Dichlorofluorescein

MPO:

Myeloperoxidase

SDS:

Sodium-dodecyl sulfate

H MP :

Mid-parent heterosis

CTMax:

Critical thermal maximum

CAT:

Catalase

References

  • Adema CM, Van der Knaap WPW, Siminia T (1991) Molluscan haemocyte-mediated cytotoxicity: the role of reactive oxygen intermediates. Rev Aquat Sci 4:201–223

    Google Scholar 

  • Babior BM (1978) Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med 298:659–668

    Article  CAS  PubMed  Google Scholar 

  • Bachère E, Hervio D, Miahle E (1991) Luminol-dependant chemiluminescence by haemocytes of the two marine bivalves, Ostrea edulis and Crassostrea gigas. Dis Aquat Org 11:173–180

    Article  Google Scholar 

  • Bansemer MS, Harris JO, Qin JG, Adams LR, Duong DN, Stone DA (2006) Growth and feed utilisation of juvenile greenlip abalone (Haliotis laevigata) in response to water temperatures and increasing dietary protein levels. Aquaculture 436:13–20

    Article  CAS  Google Scholar 

  • Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 130:1910–1917

    CAS  PubMed  Google Scholar 

  • Becker CD, Genoway RG (1979) Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environ Biol Fish 4(3):245–256

    Article  Google Scholar 

  • Buestel D, Ropert M, Prou J, Goulletquer P (2009) History, status, and future of oyster culture in France. J Shellfish Res 28(4):813–820

    Article  Google Scholar 

  • Cai W, Li S, Ma J (2004) Diseases resistance of Nile tilapia (Oreochromis niloticus), blue tilapia (Oreochromis aureus) and their hybrid (female Nile tilapia×male blue tilapia) to Aeromonas sobria. Aquaculture 229(1):79–87

    Article  Google Scholar 

  • Cai J, Han Y, Wang Z (2006) Isolation of Vibrio parahaemolyticus from abalone (Haliotis diversicolor supertexta L.) postlarvae associated with mass mortalities. Aquaculture 257(1):161–166

    Article  Google Scholar 

  • Cardinaud M, Offret C, Huchette S, Moraga D, Paillard C (2014) The impacts of handling and air exposure on immune parameters, gene expression, and susceptibility to vibriosis of European abalone Haliotis tuberculata. Fish Shellfish Immunol 36(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Chang PH, Kuo ST, Lai SH, Yang HS, Ting YY, Hsu CL, Chen HC (2005) Herpes-like virus infection causing mortality of cultured abalone Haliotis diversicolor supertexta in Taiwan. Dis Aquat Org 65(1):23–27

    Article  PubMed  Google Scholar 

  • Chang PH, Yang MC, Kuo ST, Chen MH, Cheng CH (2008) Occurrence of a rickettsia-like prokaryote in the small abalone, Haliotis diversicolor supertexta, cultured in Taiwan. Bull Eur Assoc Fish Pathol 28(2):52–57

    Google Scholar 

  • Chen M, Yang H, Delaporte M, Zhao SJ, **ng K (2007) Immune responses of the scallop Chlamys farreri after air exposure to different temperatures. J Exp Mar Biol Ecol 345(1):52–60

    Article  CAS  Google Scholar 

  • Cheng W, Hsiao IS, Hsu CH, Chen JC (2004a) Change in water temperature on the immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Fish Shellfish Immunol 17:235–243

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Hsiao IS, Chen JC (2004b) Effect of ammonia on the immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Fish Shellfish Immunol 17(3):193–202

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Juang FM, Chen JC (2004c) The immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus at different salinity levels. Fish Shellfish Immunol 16:295–306

    Article  CAS  PubMed  Google Scholar 

  • Cowles RB, Bogert CM (1944) A preliminary study of the thermal requirements of desert reptiles. Bull Am Mus Nat Hist 83(5):261–296

    Google Scholar 

  • Deng Y, Liu X, Zhang G (2007) Fertilization, hatching, metamorphosis and growth oftwo Pacific abalone populations and their reciprocal crosses. Aquaculture 272:S319–S320

    Google Scholar 

  • Denny MW (1984) Mechanical properties of pedal mucus and their consequences forgastropod structure and performance. Am Zool 24(1):23–36

    Article  Google Scholar 

  • Denny MW, Gosline JM (1980) The physical properties of the pedal mucus of theterrestrial slug, Ariolimax columbianus. J Exp Biol 88(1):375–394

    Google Scholar 

  • Di G, Zhang Z, Ke C (2013) Phagocytosis and respiratory burst activity of haemocytes from the ivory snail, Babylonia areolata. Fish Shellfish Immunol 35(2):366–374

    Article  CAS  PubMed  Google Scholar 

  • Di G, Kong X, Zhu G, Liu S, Zhang C, Ke C (2016) Pathology and physiology of Haliotis diversicolor, with withering syndrome. Aquaculture 453:1–9

    Article  CAS  Google Scholar 

  • Dı́az F, del Rı́o-Portı́lla MA, Sierra E, Aguilar M, Re-Araujo AD (2000) Preferred temperature and critical thermal maxima of red abalone Haliotis rufescens. J Therm Biol 25(3):257–261

    Article  Google Scholar 

  • Díaz F, Re AD, Medina Z, Re G, Valdez G, Valenzuela F (2006) Thermal preference and tolerance of green abalone Haliotis fulgens (Philippi, 1845) and pink abalone Haliotis corrugata (Gray, 1828). Aquac Res 37(9):877–884

    Article  Google Scholar 

  • Dweyer JJ, Burnett LE (1996) Acid-base status of the oyster Crassostrea virginica in response to air exposure and to infections by Perkinsus marinus. Biol Bull 190(1):139–147

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Essex, England

    Google Scholar 

  • Foley DA, Cheng TC (1975) A quantitative study of phagocytosis by hemolymph cells of the pelecypods Crassostrea virginica and Mecenaria mercenaria. J Invertebr Pathol 25:189–197

    Article  CAS  PubMed  Google Scholar 

  • Ford T, Beitinger TL (2005) Temperature tolerance in the goldfish, Carassius auratus. J Therm Biol 30(2):147–152

    Article  Google Scholar 

  • Gilroy A, Edwards SJ (1998) Optimum temperature for growth of australian abalone: preferred temperature and critical thermal maximum for blacklip abalone Haliotis rubra (Leach), and greenlip abalone Haliotis laevigata (Leach). Aquac Res 29:481–485

    Article  Google Scholar 

  • Hahn KO (1989) Biotic and abiotic factors affecting the culture abalone. In: Hahn KO (ed) Handbook of culture of abalone and other marine gastropods. CRC Press, Boca Raton

    Google Scholar 

  • He L, **n Z, Ying H, Yang H, Wang Y, Zhang Z (2017) The characterization of RHEB, gene and its responses to hypoxia and thermal stresses in the small abalone Haliotis diversicolor. Comp Biochem Physiol B Biochem Mol Biol 210:48–54

    Article  CAS  PubMed  Google Scholar 

  • Hecht T (1994) Behavioural thermoregulation of the abalone Haliotis midae, and the implications for intensive culture. Aquaculture 26:171–181

    Article  Google Scholar 

  • Hégaret H, Wikfors GH, Soudant P (2003) Flow cytometric analysis of haemocytes from eastern oysters, Crassostrea virginica, subjected to a sudden temperature elevation: II. Haemocyte functions: aggregation, viability, phagocytosis, and respiratory burst. J Exp Mar Biol Ecol 293(2):249–265

    Article  Google Scholar 

  • Hooper C, Day R, Slocombe R, Handlinger J, Benkendorff K (2007) Stress and immune responses in abalone: limitations in current knowledge and investigative methods based on other models. Fish Shellfish Immunol 22(4):363–379

    Article  CAS  PubMed  Google Scholar 

  • Hooper C, Day R, Slocombe R, Benkendorff K, Handlinger J, Goulias J (2014) Effects of severe heat stress on immune function, biochemistry and histopathology in farmed Australian abalone (hybrid Haliotis laevigata × Haliotis rubra). Aquaculture 432:26–37

    Article  CAS  Google Scholar 

  • Hsu TH, Gwo JC (2017) Genetic diversity and stock identification of small abalone (Haliotis diversicolor) in Taiwan and Japan. PLoS One 12(6):e0179818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwanaga S, Lee BL (2005) Recent advances in the innate immunity of invertebrate animals. BMB Rep 38(2):128–150

    Article  CAS  Google Scholar 

  • Jia X, Zhang Z, Wang S, Lin P, Zou ZH, Huang BQ, Wang YL (2009) Effects of tributyltin (TBT) on enzyme activity and oxidative stress in hepatopancreas and hemolymph of small abalone, Haliotis diversicolor supertexta. Chin J Oceanol Limnol 27:816–824

    Article  CAS  Google Scholar 

  • Knight JA (2000) Review: free radicals, antioxidants, and the immune system. Ann Clin Lab Sci 30:145–159

    CAS  PubMed  Google Scholar 

  • Kumazawa NH, Morimoto N, Okamoto Y (1993) Luminol-dependent chemilumin-escence of haemocytes derived from marine and estuarine mollusks. J Vet Med Sci 55:287–290

    Article  CAS  PubMed  Google Scholar 

  • Lafarga de la Cruz F, Gallardo-Escárate C (2011) Intraspecies and interspecies hybrids in Haliotis: natural and experimental evidence and its impact on abalone aquaculture. Rev Aquac 3:74–99

    Article  Google Scholar 

  • Lamkey KR, Edwards JW (1999) The quantitative genetics of heterosis. In: JG Coors and S Pandey (eds) Proceedings of the International Symposium on the Genetics and Exploitation of Heterosis in Crops, CIMMYT. Mexico City, Mexico. Aug. 17–22, 1997. pp 31–48

  • Lee KK, Liu PC, Chen YC, Huang CY (2001) The implication of ambient temperature with outbreak of vibriosis in cultured small abalone Haliotis diversicolor supertexta Lischke. J Therm Biol 26:585–587

    Article  Google Scholar 

  • Leighton D, Lewis C (1983) Experimental hybridization in abalone. Invertebr Reprod Dev 5:273–282

    Article  Google Scholar 

  • Liang S, Luo X, You W, Luo X, Ke C (2014) The role of hybridization in improving the immune response and thermal tolerance of abalone. Fish Shellfish Immunol 39(1):69–77

    Article  CAS  PubMed  Google Scholar 

  • Liang S, Luo X, You W, Luo X, Ke C (2018) Hybridization improved bacteria resistance in abalone: evidence from physiological and molecular responses. Fish Shellfish Immunol 72:679–689

    Article  PubMed  Google Scholar 

  • Lin AYM, Brunner R, Chen PY, Talke FE, Meyers MA (2009) Underwater adhesion of abalone: the role of van der Waals and capillary forces. Acta Mater 57(14):4178–4185

    Article  CAS  Google Scholar 

  • Liu S, Mai K (2003) The progress of studies on molluscs immunological system and mechanism—a review. Acta Oceanol Sin 25:95–105

    CAS  Google Scholar 

  • Liu X, Yan Y, Wang Z, Cai M, Ke C (2008) A preliminary study on tolerance to high temperature and low salinity of Haliotis diversicolor Reeve. J Jimei Univ Natur Sci 4:301–303

    Google Scholar 

  • Livingstone DR (2001) Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42:656–666

    Article  CAS  PubMed  Google Scholar 

  • Lv ZM, Yang AG, Wang QY, Liu ZH, Zhou LQ (2006) Preliminary cytological identification and immunological traits of hybrid scallop from Chlamys farreri (♀) × Patinopecten yessoensis (♂). J Fish Sci China 13(4):597–602

    Google Scholar 

  • Marshall DJ, McQuaid CD (1993) Differential physiological and behavioural responses of the intertidal mussels, Choromytilus meridionalis (Kr.) and Perna perna L., to exposure to hypoxia and air: a basis for spatial separation. J Exp Mar Biol Ecol 171(2):225–237

    Article  Google Scholar 

  • Matozzo V, Ballarin L, Marin MG (2004) Exposure of the clam Tapes philippinarum to 4-nonylphenol: changes in anti-oxidant enzyme activities and re-burrowing capability. Mar Pollut Bull 48:563–571

    Article  CAS  PubMed  Google Scholar 

  • Michaelidis B, Haas D, Grieshaber MK (2005) Extracellular and intracellular acid-base status with regard to the energy metabolism in the oyster Crassostrea gigas during exposure to air. Physiol Biochem Zool 78(3):373–383

    Article  CAS  PubMed  Google Scholar 

  • Nie ZQ, Wang SP (2004) The status of abalone culture in China. J Shellfish Res 23(4):941–945

    Google Scholar 

  • Ospina AF, Mora C (2004) Effect of body size on reef fish tolerance to extreme low and high temperatures. Environ Biol Fish 70(4):339–343

    Article  Google Scholar 

  • Paladino FV, Spotila JR, Schubauer JP, Kowalski KT (1980) The critical thermal maximum: a technique used to elucidate physiological stress and adaptation in fishes. Rev Can Biol 39(2):115–122

    Google Scholar 

  • Park KI, Donaghy L, Kang HS, Hong HK, Kim YO, Choi KS (2012) Assessment of immune parameters of manila clam Ruditapes philippinarum in different physiological conditions using flow cytometry. Ocean Sci J 47(1):19–26

    Article  CAS  Google Scholar 

  • Pipe RK, Coles JA (1995) Environmental contaminants influencing immune function in marine bivalve molluscs. Fish Shellfish Immunol 5(8):581–595

    Article  Google Scholar 

  • Pipe RK, Coles JA, Thomas ME, Fossato VU, Pulsfor AL (1995) Evidence for environmentally derived immunomodulation in mussels from the Venice Lagoon. Aquat Toxicol 32(1):59–73

    Article  CAS  Google Scholar 

  • Rahman MF, Siddiqui MK (2004) Biochemical effects of vepacide (from Azadirachta indica) on Wistar rats during subchronic exposure. Ecotoxicol Environ Saf 59:332–339

    Article  CAS  PubMed  Google Scholar 

  • Reynolds WW (1979) Perspective and introduction to the symposium: thermoregulation in ectotherms. Am Zool 19(1):193–194

    Article  Google Scholar 

  • Roch P (1999) Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture 172(1):125–145

    Article  Google Scholar 

  • Rothe G, Valet G (1990) Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2′, 7′-dichlorofluorescin. J Leukocyte Boil 47(5):440–448

    Article  CAS  Google Scholar 

  • Soares-da-Silva IM, Ribeiro J, Valongo C, Pinto R, Vilanova M, Bleher R, Machado J (2002) Cytometric, morphologic and enzymatic characterisation of haemocytes in Anodonta cygnea. Comp Biochem Phys A 132(3):541–553

    Article  CAS  Google Scholar 

  • Song ZR, Ji RX, Yan SF, Chen CS, Zhong YP, Jiang YH, Ni ZM (2000) A spherovirus resulted in mass mortality of Haliotis diversicolor aquatilis. J Fisheries China 24(5):463–467

    Google Scholar 

  • Wang SH, Wang YL, Zhang ZX (2004) Different response of innate immune factors in abalone Haliotis diversicolor supertexta to E. coli or Vibrio parahaemolyticus infection. J Shellfish Res 23:1173–1177

    Google Scholar 

  • Wells RMG, Baldwin J (1995) A comparison of metabolic stress during air exposure in two species of New Zealand abalone, Haliotis iris and Haliotis australis: implications for the handling and ship** of live animals. Aquaculture 134(3):361–370

    Article  Google Scholar 

  • Xue QG, Renault T, Chilmonczyk S (2001) Flow cytometric assessment of haemocyte sub-populations in the European flat oyster, Ostrea edulis, haemolymph. Fish Shellfish Immunol 11:557–567

    Article  CAS  PubMed  Google Scholar 

  • Yakovleva NV, Samoilovich MP, Gorbushin AM (2001) The diversity of strategies of defense from pathogens in molluscs. J Evol Biochem Physiol 37:358–367

    Article  Google Scholar 

  • Yang C, Kong J, Wang Q, Liu QH, Tian Y, Luo K (2007) Heterosis of haemolymph analytes of two geographic populations in Chinese shrimp Fenneropenaeus chinensis. Fish Shellfish Immunol 23(1):62–70

    Article  CAS  PubMed  Google Scholar 

  • You WW, Ke CH, Luo X, Wang DX (2009) Growth and survival of three small abalone Haliotis diversicolor populations and their reciprocal crosses. Aquac Res 40(13):1474–1480

    Article  Google Scholar 

  • You WW, Luo X, Wang DX, Lin ZB, Lin HY, Ke CH (2010) Comparisons of morphological characteristics and grow-out performance in new variety Dongyou No. 1 and its parental populations of small abalone Haliotis diversicolor. J Fisheries China 12:1837–1843

    Google Scholar 

  • You WW, Lin HY, Luo X, Wang DX, Lin ZB, Ke CH (2011a) Effects of temperature on the growth rates and survival rates of Haliotis diversicolor among different populations. J Oceanography Taiwan Strait 30(4):583–588

    Google Scholar 

  • You WW, Zhan X, Wang DX, Li WD, Luo X, Ke CH (2011b) Genetic variation analysis in wild and cultured subpopulations of small abalone Haliotis diversicolor estimated by microsatellite markers. N Am J Aquac 73(4):445–450

    Article  Google Scholar 

  • Yu RH, Wang ZP, Kong LF, Li Q, Zheng XD (2006) A study on the survival rate of Pacific oysters in different exposure states at different development stages. J Ocean Univ China 36(4):617–620

    Google Scholar 

  • Zhang GF, Que HY, Liu X, Xu HS (2004) Abalone mariculture in China. J Shellfish Res 23(4):947–950

    Google Scholar 

  • Zheng HP, Zhang GF, Guo XM, Liu X (2006) Heterosis between two stocks of the bay scallop, Argopecten irradians irradians Lamarck. J Shellfish Res 25:807–812

    Article  Google Scholar 

Download references

Funding

This work was supported by grants from National Natural Science Foundation of China (No. 31472277, U1605213), Key S&T Program of Fujian & Shandong Province (No. 2016NZ01010006 and 2016GGH4513), and Earmarked Fund for Modern Agro-industry Technology Research System (No. CARS-49).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, W., Wang, B., Luo, X. et al. Environmental stress tolerance and immune response for the small abalone hybrids. Aquacult Int 27, 105–123 (2019). https://doi.org/10.1007/s10499-018-0310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-018-0310-y

Keywords

Navigation