Log in

Cylindrospermopsin induces biochemical changes leading to programmed cell death in plants

  • The many ways of apoptotic cell death
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In the present study we provide cytological and biochemical evidence that the cyanotoxin cylindrospermopsin (CYN) induces programmed cell death (PCD) symptoms in two model vascular plants: the dicot white mustard (Sinapis alba) and the monocot common reed (Phragmites australis). Cytological data include chromatin fragmentation and the increase of the ratio of TUNEL-positive cells in roots, the latter being detected in both model systems studied. The strongest biochemical evidence is the elevation of the activity of several single-stranded DNA preferring nucleases-among them enzymes active at both acidic and alkaline conditions and are probably directly related to DNA breaks occurring at the initial stages of plant PCD: 80 kDa nucleases and a 26 kDa nuclease, both having dual (single- and double-stranded nucleic acid) specificity. Moreover, the total protease activity and in particular, a 53–56 kDa alkaline protease activity increases. This protease could be inhibited by PMSF, thus regarded as serine protease. Serine proteases are detected in all organs of Brassicaceae (Arabidopsis) having importance in differentiation of specialized plant tissue through PCD, in protein degradation/processing during early germination and defense mechanisms induced by a variety of biotic and abiotic stresses. However, knowledge of the physiological roles of these proteases and nucleases in PCD still needs further research. It is concluded that CYN treatment induces chromatin fragmentation and PCD in plant cells by activating specific nucleases and proteases. CYN is proposed to be a suitable molecule to study the mechanism of plant apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ohtani I, Moore RE, Runnegar MTC (1992) Cylindrospermopsin: a potent hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii. J Am Chem Soc 114:7941–7942

    Article  CAS  Google Scholar 

  2. Banker R, Carmeli S, Hadas O, Teltsch B, Porat R, Sukenik A (1997) Identification of cylindrospermopsin in Aphanizomenon ovalisporum (Cyanophyceae) isolated from Lake Kinneret, Israel. J Phycol 33:613–616

    Article  CAS  Google Scholar 

  3. Harada K, Ohtani I, Iwamoto K, Suzuki M, Watanabe M, Terao K (1994) Isolation of cylindrospermopsin from a cyanobacterium Umezakia natans and its screening method. Toxicon 32:73–84

    Article  CAS  PubMed  Google Scholar 

  4. Poniedziałek B, Rzymski P, Kokociński M (2012) Cylindrospermopsin: water-linked potential threat to human health in Europe. Environ Toxicol Pharmacol 34:651–660. doi:10.1016/j.etap.2012.08.005

    Article  PubMed  Google Scholar 

  5. Reisner M, Carmeli S, Werman M, Sukenik A (2004) The cyanobacterial toxin cylindrospermopsin inhibits pyrimidine nucleotide synthesis and alters cholesterol distribution in mice. Toxicol Sci 82:620–627. doi:10.1093/toxsci/kfh267

    Article  CAS  PubMed  Google Scholar 

  6. Žegura B, Štraser A, Filipič M (2011) Genotoxicity and potential carcinogenicity of cyanobacterial toxins: a review. Mutat Res Rev Mutat 727:16–41. doi:10.1016/j.mrrev.2011.01.002

    Article  Google Scholar 

  7. Falconer IR, Humpage AR (2006) Cyanobacterial (blue-green algal) toxins in water supplies: cylindrospermopsins. Environ Toxicol 21:299–304. doi:10.1002/tox.20194

    Article  CAS  PubMed  Google Scholar 

  8. Gácsi M, Antal O, Vasas G, Máthé C, Borbély G, Saker ML, Győri J, Farkas A, Vehovszky Á, Bánfalvi G (2009) Comparative study of cyanotoxins affecting cytoskeletal and chromatin structures in CHO-K1 cells. Toxicol In Vitro 23:710–718. doi:10.1016/j.tiv.2009.02.006

    Article  PubMed  Google Scholar 

  9. Guzmán-Guillén R, Manzano IL, Moreno IM, Prieto A, Ortega AI, Moyano R, Blanco A, Cameán AM (2015) Cylindrospermopsin induces neurotoxicity in tilapia fish (Oreochromis niloticus) exposed to Aphanizomenon ovalisporum. Aquat Toxicol 161:17–24. doi:10.1016/j.aquatox.2015.01.024

    Article  PubMed  Google Scholar 

  10. Terao K, Ohmori S, Igarashi K, Ohtani I, Watanabe MF, Harada KI, Ito E, Watanabe M (1994) Electron microscopic studies on experimental poisoning in mice induced by cylindrospermopsin isolated from blue-green alga Umezakia natans. Toxicon 32:833–843

    Article  CAS  PubMed  Google Scholar 

  11. Gutiérrez-Praena D, Jos Á, Pichardo S, Moyano S, Blanco A, Monterde JG, Cameán A (2012) Time-dependent histopathological changes induced in Tilapia (Oreochromis niloticus) after acute exposure to pure cylindrospermopsin by oral and intraperitoneal route. Ecotox Environ Safe 76:102–113. doi:10.1016/j.ecoenv.2011.10.008

    Article  Google Scholar 

  12. Beyer D, Surányi G, Vasas G, Roszik J, Erdődi F, M-Hamvas M, Bácsi I, Bátori R, Serfőző Z, Szigeti Z M, Vereb G, Demeter Z, Gonda S, Máthé C (2009) Cylindrospermopsin induces alterations of root histology and microtubule organization in common reed (Phragmites australis) plantlets cultured in vitro. Toxicon 54:440–449. doi:10.1016/j.toxicon.2009.05.008

    Article  CAS  PubMed  Google Scholar 

  13. M-Hamvas M, Máthé C, Vasas G, Jámbrik K, Papp M, Beyer D, Mészáros I, Borbély G (2010) Cylindrospermopsin and microcystin-LR alter the growth, development and peroxidase enzyme activity of white mustard (Sinapis alba L.) seedlings, a comparative analysis. Acta Biol Hung 61:35–48. doi:10.1556/ABiol.61.2010.Suppl5

  14. Garda T, Riba M, Vasas G, Beyer D, M-Hamvas M, Hajdu G, Tándor I, Máthé C (2015) Cytotoxic effects of cylindrospermopsin in mitotic and non-mitotic Vicia faba cells. Chemosphere 120:145–153. doi:10.1016/j.chemosphere.2014.06.035

    Article  CAS  PubMed  Google Scholar 

  15. Thomas H, Ougham H, Mur L, Jansson S (2015) Senescence and cell death. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants, 2nd edn. Wiley Blackwell-ASPB, Chichester, pp 925–982

    Google Scholar 

  16. Rotari VI, He R, Gallois P (2005) Death by proteases in plants: whodunit-review. Physiol Plant 123:376–385. doi:10.1111/j.1399-3054.2005.00465.x

    Article  CAS  Google Scholar 

  17. Antão CM, Malcata FX (2005) Plant serine proteases: biochemical, physiological and molecular features-review. Plant Physiol Biochem 43:637–665. doi:10.1016/j.plaphy.2005.05.001

    Article  PubMed  Google Scholar 

  18. Gutiérrez-Praena D, Jos A, Pichardo S, Puerto M, Cameán AM (2013) Influence of the exposure way and the time of sacrifice on the effects induced by a single dose of pure cylindrospermopsin on the activity and transcription of glutathione peroxidase and glutathione-S-transferase enzymes in tilapia (Oreochromis niloticus). Chemosphere 90:986–992. doi:10.1016/j.chemosphere.2012.06.067

    Article  PubMed  Google Scholar 

  19. Freitas M, Campos A, Azevedo J, Barreiro A, Planchon S, Renaut J, Vasconcelos V (2015) Lettuce (Lactuca sativa L.) leaf-proteome profiles after exposure to cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture: a concentration-dependent response. Phytochemistry 110:91–103. doi:10.1016/j.phytochem.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  20. Kós P, Gorzó G, Surányi G, Borbely G (1995) Simple and efficient method for isolation and measurement of cyanobacterial hepatotoxins by plant tests (Sinapis alba L.) Anal Biochem 225:49–53

    Article  PubMed  Google Scholar 

  21. Vasas G, Gáspár A, Surányi G, Batta G, Gyémánt G, M-Hamvas M, Máthé C, Grigorszky I, Molnár E, Borbély G (2002) Capillary electrophoretic assay and purification of cylindrospermopsin, a cyanobacterial toxin from Aphanizomenon ovalisporum, by plant test (blue–green Sinapis test). Anal Biochem 302:95–103. doi:10.1006/abio.2001.5525

    Article  CAS  PubMed  Google Scholar 

  22. Pflugmacher S, Wiegand C, Beattie C, Krause E, Steinberg CEW, Codd GA (2001) Uptake, effects and metabolism of cyanobacterial toxins in the emergent reed plant Phragmites australis (CAV.) Trin. Ex Steud. Environ Toxicol Chem 20:846–852

    Article  CAS  PubMed  Google Scholar 

  23. Máthé C, M-Hamvas M, Vasas G, Surányi G, Bácsi I, Beyer D, Tóth S, Tímár M, Borbély G (2007) Microcystin-LR, a cyanobacterial toxin, induces growth inhibition and histological alterations in common reed (Phragmites australis /Cav./ Trin. Ex Steud.) plants regenerated from embryogenic calli. New Phytol 176:824–835. doi:10.1111/j.1469-8137.2007.02230.x

    Article  PubMed  Google Scholar 

  24. Jámbrik K, Máthé C, Vasas G, Beyer D, Molnár E, Borbély G, M-Hamvas M (2011) Microcystin-LR induces chromatin alterations and modulates neutral single-strand-preferring nuclease activity in Phragmites australis. J Plant Physiol 168:678–686. doi:10.1016/j.jplph.2010.10.007

    Article  PubMed  Google Scholar 

  25. Vasas G, Gáspár A, Páger C, Surányi G, Máthé C, Hamvas M M, Borbély G (2004) Analysis of cyanobacterial toxins (anatoxin-a, cylindrospermopsin, microcystin-LR) by capillary electrophoresis. Electrophoresis 25:108–115. doi:10.1002/elps.200305641

    Article  CAS  PubMed  Google Scholar 

  26. Máthé C, Hamvas M M, Grigorszky I, Vasas G, Molnár E, Power JB, Davey MR, Borbély G (2000) Plant regeneration from embryogenic calli of Phragmites australis (Cav.) Trin. Ex Steud. (common reed). Plant Cell Tissue Org 63:81–84

    Article  Google Scholar 

  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  28. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  29. Hamvas M M, Máthé C, Papp M, Grigorszky I, Molnár E, Vasas G, Borbély G (2003) Microcystin-LR alters growth, anthocyanin content and single-stranded DNase enzyme activities in Sinapis alba L. seedlings. Aquat Toxicol 62:1–9

    Article  Google Scholar 

  30. Allen MM (1968) Simple conditions for the growth of unicellular blue-green algae on plates. J Phycol 4:1–4

    Article  CAS  PubMed  Google Scholar 

  31. Máthé C, Vasas G, Borbély G, Erdődi F, Beyer D, Kiss A, Surányi G, Gonda S, Jámbrik K, M-Hamvas M (2013a) Histological, cytological and biochemical alterations induced by microcystin-LR and cylindrospermopsin in white mustard (Sinapis alba L.) seedlings. Acta Biol Hung 64:75–89. doi:10.1556/ABiol.64.2013.1.7

    Article  Google Scholar 

  32. Jámbrik K, Máthé C, Vasas G, Bácsi I, Surányi G, Gonda S, Borbély G, M-Hamvas M (2010) Cylindrospermopsin inhibits growth and modulates protease activity in the aquatic plants Lemna minor L. and Wolffia arrhiza (L.) Horkel. Acta Biol Hung 61:77–94. doi:10.1556/ABiol.61.2010.Suppl9

    Article  PubMed  Google Scholar 

  33. Schlereth A, Becker C, Horstmann C, Tiedemann J, Müntz K (2000) Comparison of globulin mobilization and cysteine proteinases in embryogenic axes and cotyledons during germination and seedling growth of vetch (Vicia sativa L.) J Exp Bot 51:1423–1433. doi:10.1093/jexbot/51.349.1423

    Article  CAS  PubMed  Google Scholar 

  34. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  35. Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  36. Kosslak RM, Chamberlin MA, Palmer RG, Bowen BA (1997) Programmed cell death in the root cortex of soybean root necrosis mutants. Plant J 11:729–745

    Article  CAS  PubMed  Google Scholar 

  37. Gjørret JO, Knijn HM, Dieleman SJ, Avery B, Larsson LI, Maddox-Hyttel P (2003) Chronology of apoptosis in bovine embryos produced in vivo and in vitro. Biol Reprod 69:1193–1200. doi:10.1095/biolreprod.102.013243

    Article  PubMed  Google Scholar 

  38. Máthé C, M-Hamvas M, Vasas G (2013) Microcystin-LR and cylindrospermopsin induced alterations in chromatin organization of plant cells. Mar Drugs 168:3689–3717. doi:10.3390/md11103689

    Article  Google Scholar 

  39. Wood M, Power JB, Davey MR, Lowe KC, Mulligan BJ (1998) Factors affecting single strand-preferring nuclease activity during leaf aging and dark-induced senescence in barley (Hordeum vulgare L.) Plant Sci 131:149–159. doi:10.1016/S0168945297002537

    Article  CAS  Google Scholar 

  40. Pérez-Amador MA, Abler ML, De Rocher J, Thompson DM, van Holol A, LeBrasseur ND, Lers A, Green PJ (2000) Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis. Plant Physiol 122:169–179. doi:10.1104/pp.122.1.169

    Article  PubMed  PubMed Central  Google Scholar 

  41. Desai NA, Shankar V (2003) Single strand-specific nucleases. FEMS Microbiol Rev 26:457–491

    Article  CAS  PubMed  Google Scholar 

  42. Chen H-M, Pang Y, Zeng J, Ding Q, Yin S-Y, Liu C, Lu M-Z, Cui K-M, He X-Q (2012) The Ca2+-dependent DNases are involved in secondary xylem development in Eucommia ulmoides. J Integr Plant Biol 54(7):456–470. doi:10.1111/j.1744-7909.2012.01134.x

    Article  CAS  PubMed  Google Scholar 

  43. Lers A, Lomaniec E, Burd S, Kalchitski A (2001) Characterization of LeNUC1, a nuclease associated with leaf senescence of tomato. Physiol Plant 112:176–182. doi:10.1034/j.1399-3054.2001.1120205.x

    Article  CAS  PubMed  Google Scholar 

  44. Sugiyama M, Ito J, Aoyagi S, Fukuda H (2000) Endonucleases. Plant Mol Biol 44:387–397

    Article  CAS  PubMed  Google Scholar 

  45. Tada Y, Hata S, Takata Y, Nakayashiki H, Tosa Y, Mayama S (2001) Induction and signaling of an apoptotic response typified by DNA laddering in the defense response of oats to infection and elicitors. Mol Plant Microb Interact 14:477–486

    Article  CAS  Google Scholar 

  46. Han J-J, Lin W, Oda Y, Cui K-M, Fukuda H, He X-Q (2012) The proteasome is responsible for caspase-3-like activity during xylem development. Plant J 72:129–141. doi:10.1111/j.1365-313X.2012.05070.x

    Article  CAS  PubMed  Google Scholar 

  47. Kusaka K, Tada Y, Shigemi T, Sakamoto M, Nakayashiki H, Tosa Y, Shigeyuki M (2004) Coordinate involvement of cysteine protease and nuclease in the executive phase of plant apoptosis. FEBS Lett 578:363–367. doi:10.1016/j.febslet.2004.10.101

    Article  CAS  PubMed  Google Scholar 

  48. Watanabe N, Lam E (2005) Two Arabidopsis metacaspases ATMCP1b and ATMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem 280:14691–14699. doi:10.1074/jbc.M413527200

    Article  CAS  PubMed  Google Scholar 

  49. Bozhkov PV, Suarez MF, Filonova LH, Daniel G, Zamyatnin AA, Rodriguez-Nieto S, Zhivotovsky B, Smertenko A (2005) Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proc Natl Acad Sci USA 102:14463–14468. doi:10.1073/pnas.0506948102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Danon A, Rotari VI, Gordon A, Mailhac N, Gallois P (2004) Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and Defender against apoptotic death. J Biol Chem 279:779–787. doi:10.1074/jbc.M304468200

    Article  CAS  PubMed  Google Scholar 

  51. Bozhkov PV, Filonova LH, Suarez MF, Helmersson A, Smertenko AP, Zhivotovsky B, von Arnold S (2004) VEIDase is a principal caspase-like activity involved in plant programmed cell death and essential for embryonic pattern formation. Cell Death Differ 11:175–182. doi:10.1038/sj.cdd.4401330

    Article  CAS  PubMed  Google Scholar 

  52. Woltering EJ (2004) Death proteases come alive. Trends Plant Sci 9:469–472. doi:10.1016/j.tplants.2004.08.001

    Article  CAS  PubMed  Google Scholar 

  53. Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A (1999) The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11:431–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Piechota J, Kolodziejczak M, Juszczak I, Sakamoto W, Janska H (2010) Identification and characterization of high molecular weight complexes formed by matrix AAA proteases and prohibitins in mitochondria of Arabidopsis thaliana. J Biol Chem 285:12512–12521. doi:10.1074/jbc.M109.063644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Leśniewicz K, Pieńkowska J, Poręba E (2010) Characterization of nucleases involved in seedling development of cauliflower. J Plant Physiol 167:1093–1100. doi:10.1016/j.jplph.2010.03.011

    Article  PubMed  Google Scholar 

  56. Štraser A, Filipič M, Gorenc I, Žegura B (2013) The influence of cylindrospermopsin on oxidative DNA damage and apoptosis induction in HepG2 cells. Chemosphere 92:24–30. doi:10.1016/j.chemosphere.2013.03.023

    Article  PubMed  Google Scholar 

  57. Sieroslawska A, Rymuszka A (2014) Cylindrospermopsin induces oxidative stress and genotoxic effects in the fish CLC cell line. J Appl Toxicol. doi:10.1002/jat.3040

    Google Scholar 

  58. Garda T, Kónya Z, Tándor I, Beyer D, Vasas G, Erdődi F, Vereb G, Papp G, Riba M, M-Hamvas M, Máthé C (2016) Microcystin-LR induces mitotic spindle assembly disorders in Vicia faba by protein phosphatase inhibition and not reactive oxygen species induction. J Plant Physiol 199:1–11. doi:10.1016/j.jplph.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  59. Prieto A, Campos A, Cameán A, Vasconcelos V (2011) Effects on growth and oxidative stress status of rice plants (Oryza sativa) exposed to two extracts of toxin-producing cyanobacteria (Aphanizomenon ovalisporum and Microcystis aeruginosa). Ecotox Environ Saf 74:1973–1980. doi:10.1016/j.ecoenv.2011.06.009

    Article  CAS  Google Scholar 

  60. Flores-Rojas NC, Esterhuizen-Londt M, Pflugmacher S (2015) Antioxidative stress responses in the floating macrophyte Lemna minor L. with cylindrospermopsin exposure. Aquat Toxicol 169:188–195. doi:10.1016/j.aquatox.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  61. Puerto M, Campos A, Prieto A, Cameán A, de Almeida AM, Coelho AV, Vasconcelos V (2011) Differential protein expression in two bivalve species; Mytilus galloprovincialis and Corbicula fluminea; exposed to Cylindrospermopsis raciborskii cells. Aquat Toxicol 101:109–116. doi:10.1016/j.aquatox.2010.09.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support of Grants NKFI K120638 to CM and K119647 to GV is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Máthé.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 215 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M-Hamvas, M., Ajtay, K., Beyer, D. et al. Cylindrospermopsin induces biochemical changes leading to programmed cell death in plants. Apoptosis 22, 254–264 (2017). https://doi.org/10.1007/s10495-016-1322-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1322-6

Keywords

Navigation