Log in

Tropomyosin-related kinase B promotes distant metastasis of colorectal cancer through protein kinase B-mediated anoikis suppression and correlates with poor prognosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

An increasing amount of evidence demonstrated that the neurotrophic receptor tropomyosin-related kinase B (TrkB) plays a critical role in the development and progression of multiple types of cancer. However, its underlying mechanism in distant metastasis through the circulatory and lymphatic systems in colorectal cancer (CRC) is still unclear. Here we showed that downregulation of TrkB using short hairpin RNA obviously increased anoikis (detachment-induced apoptosis resulting from loss of cell–matrix interactions) sensitivity of CRC cells in vitro. Furthermore, using tail vein injection model, we confirmed that silencing TrkB significantly inhibited metastasis of CRC cells in vivo. Conversely, overexpression of TrkB obviously protected CRC cells from anoikis in vitro. Both loss- and gain-of-functional experiments indicated that TrkB could be a functional molecule in anti-anoikis of CRC cells. Mechanistically, we found that protein kinase B (PKB, also known as Akt) signaling pathway was a functional link in TrkB-induced anoikis suppression in CRC cells. Phosphorylation levels of Akt are closely related with the expression pattern of TrkB in CRC cells and inhibition of Akt activation robustly induces anoikis of CRC cells in vitro. In addition, our clinical investigation showed that high TrkB expression levels in CRC patients were associated with lymph node metastasis, distant metastasis and unfavourable prognosis. Thus, based on our results, this study suggests that an important function of TrkB is to protect CRC cells from anoikis in the circulatory and lymphatic systems, and that TrkB could be a promising candidate in CRC therapy, especially in the inhibition of cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fong Y, Fortner J, Sun RL, Brennan MF, Blumgart LH (1999) Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 230:309–321

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Frisch SM, Francis H (1994) Disruption of epithelial cell–matrix interactions induces apoptosis. J Cell Biol 124:619–626

    Article  PubMed  CAS  Google Scholar 

  3. Liotta LA, Kohn EC (2001) The micro environment of the tumour–host interface. Nature 411:375–379

    Article  PubMed  CAS  Google Scholar 

  4. Meredith JE, Fazeli JB, Schwartz MA (1993) The extracellular matrix as a cell survival factor. Mol Biol Cell 4:953–961

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Klein R, Nanduri V, **g SA, Lamballe F, Tapley P et al (1991) The TrkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell 66:395–403

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM (1994) Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 14:759–767

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Perez-Pinera P, Hernandez T, García-Suárez O, de Carlos F, Germana A et al (2007) The Trk tyrosine kinase inhibitor K252a regulates growth of lung adenocarcinomas. Mol Cell Biochem 295:19–26

    Article  PubMed  CAS  Google Scholar 

  8. Dionne CA, Camoratto AM, Jani JP, Emerson E, Neff N et al (1998) Cell cycle-independent death of prostate adenocarcinoma is induced by the trk tyrosine kinase inhibitor CEP-751 (KT6587). Clin Cancer Res 4:1887–1898

    PubMed  CAS  Google Scholar 

  9. Miknyoczki SJ, Lang D, Huang L, Klein-Szanto AJ, Dionne CA et al (1999) Neurotrophins and Trk receptors in human pancreatic ductal adenocarcinoma: expression patterns and effects on in vitro invasive behaviour. Int J Cancer 81:417–427

    Article  PubMed  CAS  Google Scholar 

  10. Yu X, Liu L, Cai B, He Y, Wan X (2008) Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci 99:543–552

    Article  PubMed  CAS  Google Scholar 

  11. Nakamura K, Martin KC, Jackson JK, Beppu K, Woo CW et al (2006) Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1alpha in neuroblastoma cells. Cancer Res 66:4249–4255

    Article  PubMed  CAS  Google Scholar 

  12. Jaboin J, Kim CJ, Kaplan DR, Thiele CJ (2002) Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3′-kinase pathway. Cancer Res 62:6756–6763

    PubMed  CAS  Google Scholar 

  13. Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E et al (2004) Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 430:1034–1039

    Article  PubMed  CAS  Google Scholar 

  14. Yu Y, Zhang S, Wang X, Yang Z, Ou G (2010) Overexpression of TrkB promotes the progression of colon cancer. APMIS 118:188–195

    Article  PubMed  CAS  Google Scholar 

  15. Brunetto de Farias C, Rosemberg DB, Heinen TE, Koehler-Santos P, Abujamra AL et al (2010) BDNF/TrkB content and interaction with gastrin-releasing peptide receptor blockade in colorectal cancer. Oncology 79:430–439

    Article  PubMed  CAS  Google Scholar 

  16. de Farias CB, Heinen TE, dos Santos RP, Abujamra AL, Schwartsmann G et al (2012) BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition. Biochem Biophys Res Commun 425:328–332

    Article  PubMed  CAS  Google Scholar 

  17. Fujikawa H, Tanaka K, Toiyama Y, Saigusa S, Inoue Y et al (2012) High TrkB expression levels are associated with poor prognosis and EMT induction in colorectal cancer cells. J Gastroenterol 47:775–784

    Article  PubMed  CAS  Google Scholar 

  18. Liu LZ, Zhou XD, Qian G, Shi X, Fang J et al (2007) Akt1 amplification regulates cisplatin resistance in human lung cancer cells through the mammalian target of rapamycin/p70S6K1 pathway. Cancer Res 67:6325–6332

    Article  PubMed  CAS  Google Scholar 

  19. Faried LS, Faried A, Kanuma T, Aoki H, Sano T et al (2008) Expression of an activated mammalian target of rapamycin in adenocarcinoma of the cervix: a potential biomarker and molecular target therapy. Mol Carcinog 47:446–457

    Article  PubMed  CAS  Google Scholar 

  20. Yang X, Fraser M, Moll UM, Basak A, Tsang BK (2006) Akt-mediated cisplatin resistance in ovarian cancer: modulation of p53 action on caspase-dependent mitochondrial death pathway. Cancer Res 66:3126–3136

    Article  PubMed  CAS  Google Scholar 

  21. Khwaja A, Rodriguez-Viciana P, Wennström S, Warne PH, Downward J (1997) Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J 16:2783–2793

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Schmidt M, Hövelmann S, Beckers TL (2002) A novel form of constitutively active farnesylated Akt1 prevents mammary epithelial cells from anoikis and suppresses chemotherapy-induced apoptosis. Br J Cancer 87:924–932

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Rhodes A, Jasani B, Barnes DM, Bobrow LG, Miller KD (2000) Reliability of immunohistochemical demonstration of oestrogen receptors in routine practice: interlaboratory variance in the sensitivity of detection and evaluation of scoring systems. J Clin Pathol 53:125–130

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309

    Article  PubMed  CAS  Google Scholar 

  25. Nakagawara A (2001) Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett 169:107–114

    Article  PubMed  CAS  Google Scholar 

  26. Okamura K, Harada T, Wang S, Ijichi K, Furuyama K et al (2012) Expression of TrkB and BDNF is associated with poor prognosis in non-small cell lung cancer. Lung Cancer 78:100–106

    Article  PubMed  Google Scholar 

  27. Okugawa Y, Tanaka K, Inoue Y, Kawamura M, Kawamoto A et al (2013) Brain-derived neurotrophic factor/tropomyosin-related kinase B pathway in gastric cancer. Br J Cancer 108:121–130

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Iyer R, Varela CR, Minturn JE, Ho R, Simpson AM et al (2012) AZ64 inhibits TrkB and enhances the efficacy of chemotherapy and local radiation in neuroblastoma xenografts. Cancer Chemother Pharmacol 70:477–486

    Article  PubMed  CAS  Google Scholar 

  29. Geiger TR, Peeper DS (2005) The neurotrophic receptor TrkB in anoikis resistance and metastasis: a perspective. Cancer Res 65:7033–7036

    Article  PubMed  CAS  Google Scholar 

  30. Geiger TR, Peeper DS (2007) Critical role for TrkB kinase function in anoikis suppression tumorigenesis and metastasis. Cancer Res 67:6221–6229

    Article  PubMed  CAS  Google Scholar 

  31. Tanaka K, Mohri Y, Nishioka J, Kobayashi M, Ohi M et al (2009) Neurotrophic receptor, tropomyosin-related kinase B as an independent prognostic marker in gastric cancer patients. J Surg Oncol 99:307–310

    Article  PubMed  CAS  Google Scholar 

  32. Franke TF, Kaplan DR, Cantley LC (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88:435–437

    Article  PubMed  CAS  Google Scholar 

  33. Burgering BM, Coffer PJ (2004) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602

    Article  Google Scholar 

  34. Datta SR, Dudek H, Tao X, Masters S, Fu H et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Article  PubMed  CAS  Google Scholar 

  35. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF et al (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321

    Article  PubMed  CAS  Google Scholar 

  36. Lee SH, Kim HS, Park WS, Kim SY, Lee KY et al (2002) Non-small cell lung cancers frequently express phosphorylated Akt: an immunohistochemical study. APMIS 110:587–592

    Article  PubMed  CAS  Google Scholar 

  37. Itoh N, Semba S, Ito M, Takeda H, Kawata S et al (2002) Phosphorylation of Akt/PKB is required for suppression of cancer cell apoptosis and tumor progression in human colorectal carcinoma. Cancer 94:3127–3134

    Article  PubMed  CAS  Google Scholar 

  38. Shukla S, Maclennan GT, Marengo SR, Resnick MI, Gupta S (2005) Constitutive activation of PI3K–Akt and NF-kappaB during prostate cancer progression in autochthonous transgenic mouse model. Prostate 64:224–239

    Article  PubMed  CAS  Google Scholar 

  39. Yuan ZQ, Sun M, Feldman RI, Wang G, Ma X et al (2000) Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene 19:2324–2330

    Article  PubMed  CAS  Google Scholar 

  40. Page C, Huang M, ** X, Cho K, Lilja J et al (2000) Elevated phosphorylation of AKT and Stat3 in prostate, breast, and cervical cancer cells. Int J Oncol 17:23–28

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 30901786, 81172010). We thank **aofang Zhang for her excellent technical assistance. We also thank the patients who gave consent to use their tissue for research.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weizhong Wang, Rui Zhang or Jipeng Li.

Additional information

Meng Fan, Jianyong Sun, Wei Wang and **g Fan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, M., Sun, J., Wang, W. et al. Tropomyosin-related kinase B promotes distant metastasis of colorectal cancer through protein kinase B-mediated anoikis suppression and correlates with poor prognosis. Apoptosis 19, 860–870 (2014). https://doi.org/10.1007/s10495-014-0968-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-0968-1

Keywords

Navigation