Log in

α-Tocopheryl succinate causes mitochondrial permeabilization by preferential formation of Bak channels

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

An Erratum to this article was published on 22 October 2013

Abstract

Mitocans are drugs selectively killing cancer cells by destabilizing mitochondria and many induce apoptosis via generation of reactive oxygen species (ROS). However, the molecular events by which ROS production leads to apoptosis has not been clearly defined. In this study with the mitocan α-tocopheryl succinate (α-TOS) the role of the Bcl-2 family proteins in the mechanism of malignant cell apoptosis has been determined. Exposure of several different cancer cell lines to α-TOS increased expression of the Noxa protein, but none of the other proteins of the Bcl-2 family, an event that was independent of the cellular p53 status. α-TOS caused a profound conformational change in the pro-apoptotic protein, Bak, involving oligomerization in all cell types, and this also applied to the Bax protein, but only in non-small cell lung cancer cells. Immunoprecipitation studies indicated that α-TOS activates the two BH1-3 proteins, Bak or Bax, to form high molecular weight complexes in the mitochondria. RNAi knockdown revealed that Noxa and Bak are required for α-TOS-induced apoptosis, and the role of Bak was confirmed using Bak- and/or Bax-deficient cells. We conclude that the major events induced by α-TOS in cancer cells downstream of ROS production leading to mitochondrial apoptosis involve the Noxa-Bak axis. It is proposed that this represents a common mechanism for mitochondrial destabilization activated by a variety of mitocans that induce accumulation of ROS in the early phases of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BH3:

Bcl-2 homology domain-3

CII:

Complex II

Cox IV:

Cytochrome c oxidase subunit IV

DHE:

Dihydroethidium

ECL:

Enhanced chemiluminescence

MOM:

Mitochondrial outer membrane

RNAi:

RNA interference

ROS:

Reactive oxygen species

Q-PCR:

Quantitative real-time PCR

siRNA:

Short interfering RNA

STS:

Staurosporin

α-TEA:

α-Tocopheryloxyacetic acid

α-TOS:

α-Tocopheryl succinate

TRAIL:

TNF-related apoptosis-inducing ligand

VE:

Vitamin E

References

  1. Neuzil J, Dong LF, Ramanathapuram L et al (2007) Vitamin E analogues as a novel group of mitocans: anti-cancer agents that act by targeting mitochondria. Mol Asp Med 28:607–645

    Article  CAS  Google Scholar 

  2. Weber T, Dalen H, Andera L et al (2003) Mitochondria play a central role in apoptosis induced by alpha-tocopheryl succinate, an agent with antineoplastic activity: comparison with receptor-mediated pro-apoptotic signaling. Biochemistry 42:4277–4291

    Article  CAS  PubMed  Google Scholar 

  3. Dong LF, Low P, Dyason JC et al (2008) α-Tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene 27:4324–4335

    Article  CAS  PubMed  Google Scholar 

  4. Dong LF, Freeman R, Liu J et al (2009) Suppression of tumor growth in vivo by the mitocan α-tocopheryl succinate requires respiratory complex II. Clin Cancer Res 15:1593–1600

    Article  CAS  PubMed  Google Scholar 

  5. Kang YH, Lee E, Choi MK et al (2004) Role of reactive oxygen species in the induction of apoptosis by α-tocopheryl succinate. Int J Cancer 112:385–392

    Article  CAS  PubMed  Google Scholar 

  6. Alleva R, Tomasetti M, Andera L et al (2001) Coenzyme Q blocks biochemical but not receptor-mediated apoptosis by increasing mitochondrial antioxidant protection. FEBS Lett 503:46–50

    Article  CAS  PubMed  Google Scholar 

  7. Stapelberg M, Gellert N, Swettenham E et al (2005) α-Tocopheryl succinate inhibits malignant mesothelioma by disrupting the fibroblast growth factor autocrine loop. J Biol Chem 280:25369–25376

    Article  CAS  PubMed  Google Scholar 

  8. Neuzil J, Wang XF, Dong LF, Low P, Ralph SJ (2006) Molecular mechanism of ‘mitocan’-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett 580:5125–5129

    Article  CAS  PubMed  Google Scholar 

  9. Shiau CW, Huang JW, Wang DS et al (2006) α-Tocopheryl succinate induces apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 function. J Biol Chem 281:11819–11825

    Article  CAS  PubMed  Google Scholar 

  10. Yu WP, Sanders BG, Kline K (2003) RRR-α-tocopheryl succinate-induced apoptosis of human breast cancer cells involves Bax translocation to mitochondria. Cancer Res 63:2483–2491

    CAS  PubMed  Google Scholar 

  11. D’Alessio M, De Nicola M, Coppola S et al (2005) Oxidative Bax dimerization promotes its translocation to mitochondria independently of apoptosis. Faseb J 19:1504–1506

    PubMed  Google Scholar 

  12. Neuzil J, Dyason JC, Freeman R et al (2007) Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin E analogues, inhibitors of complex II. J Bioenerg Biomembr 39:65–72

    Article  CAS  PubMed  Google Scholar 

  13. Wei MC, Zong WX, Cheng EHY et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    Article  CAS  PubMed  Google Scholar 

  14. Reed JC (2006) Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13:1378–1386

    Article  CAS  PubMed  Google Scholar 

  15. Lindsten T, Ross AJ, King A et al (2000) The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol Cell 6:1389–1399

    Article  CAS  PubMed  Google Scholar 

  16. Korsmeyer SJ, Wei MC, Saito M, Weller S, Oh KJ, Schlesinger PH (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7:1166–1173

    Article  CAS  PubMed  Google Scholar 

  17. Willis SN, Fletcher JI, Kaufmann T et al (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315:856–859

    Article  CAS  PubMed  Google Scholar 

  18. Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122:437–441

    Article  CAS  PubMed  Google Scholar 

  19. Wang P, Yu WP, Hu ZZ et al (2008) Involvement of JNK/p73/NOXA in vitamin E analog-induced apoptosis of human breast cancer cells. Mol Carcinogen 47:436–445

    Article  CAS  Google Scholar 

  20. Hsu YT, Youle RJ (1997) Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem 272:13829–13834

    Article  CAS  PubMed  Google Scholar 

  21. Griffiths GJ, Corfe BM, Savory P et al (2001) Cellular damage signals promote sequential changes at the N-terminus and BH-1 domain of the pro-apoptotic protein Bak. Oncogene 20:7668–7676

    Article  CAS  PubMed  Google Scholar 

  22. Zhang LL, Shimizu S, Sakamaki K, Yonehara S, Tsujimoto Y (2004) A caspase-8-independent signaling pathway activated by fas ligation leads to exposure of the Bak N terminus. J Biol Chem 279:33865–33874

    Article  CAS  PubMed  Google Scholar 

  23. Kuwana T, Mackey MR, Perkins G et al (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342

    Article  CAS  PubMed  Google Scholar 

  24. Schafer B, Quispe J, Choudhary V et al (2009) Mitochondrial outer membrane proteins assist bid in bax-mediated lipidic pore formation. Mol Biol Cell 20:2276–2285

    Article  CAS  PubMed  Google Scholar 

  25. Hardwick JM, Polster BM (2002) Bax, along with lipid conspirators, allows cytochrome c to escape mitochondria. Mol Cell 10:963–965

    Article  CAS  PubMed  Google Scholar 

  26. Lee RM, Chen J, Matthews CP, McDougall JK, Neiman PE (2001) Characterization of NR13-related human cell death regulator, Boo/Diva, in normal and cancer tissues. Biochim Biophys Acta 1520:187–194

    CAS  PubMed  Google Scholar 

  27. Jones S, Zhang XS, Parsons DW et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  CAS  PubMed  Google Scholar 

  28. Parsons DW, Jones S, Zhang XS et al (2008) An integrated genomic analysis of human glioblastoma Multiforme. Science 321:1807–1812

    Article  CAS  PubMed  Google Scholar 

  29. Hayden EC (2008) Cancer complexity slows quest for cure. Nature 455:148

    Article  CAS  Google Scholar 

  30. Reed JC, Pellecchia M (2005) Apoptosis-based therapies for hematologic malignancies. Blood 106:408–418

    Article  CAS  PubMed  Google Scholar 

  31. Green DR, Kroemer G (2005) Pharmacological manipulation of cell death: clinical applications in sight? J Clin Invest 115:2610–2617

    Article  CAS  PubMed  Google Scholar 

  32. Wang GQ, Wieckowski E, Goldstein LA et al (2001) Resistance to granzyme B-mediated cytochrome c release in Bak-deficient cells. J Exp Med 194:1325–1337

    Article  CAS  PubMed  Google Scholar 

  33. Giaccone G, Battey J, Gazdar AF, Oie H, Draoui M, Moody TW (1992) Neuromedin-B is present in lung-cancer cell-lines. Cancer Res 52:2732s–S2736s

    CAS  PubMed  Google Scholar 

  34. Kotala V, Uldrijan S, Horky M, Trbusek M, Strnad M, Vojtesek B (2001) Potent induction of wild-type p53-dependent transcription in tumour cells by a synthetic inhibitor of cyclin-dependent kinases. Cell Mol Life Sci 58:1333–1339

    Article  CAS  PubMed  Google Scholar 

  35. Kelso GF, Porteous CM, Coulter CV et al (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276:4588–9456

    Article  CAS  PubMed  Google Scholar 

  36. Weber T, Lu M, Andera L et al (2002) Vitamin E succinate is a potent novel antineoplastic agent with high selectivity and cooperativity with tumor necrosis factor-related apoptosis-inducing ligand (Apo2 ligand) in vivo. Clin Cancer Res 8:863–869

    CAS  PubMed  Google Scholar 

  37. Griffiths GJ, Dubrez L, Morgan CP et al (1999) Cell damage-induced conformational changes of the pro-apoptotic protein bak in vivo precede the onset of apoptosis. J Cell Biol 144:903–914

    Article  CAS  PubMed  Google Scholar 

  38. Mandic A, Viktorsson K, Molin M et al (2001) Cisplatin induces the proapoptotic conformation of Bak in a Delta MEKK1-dependent manner. Mol Cell Biol 21:3684–3691

    Article  CAS  PubMed  Google Scholar 

  39. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  Google Scholar 

  40. Swettenham E, Witting PK, Salvatore BA, Neuzil J (2005) α-Tocopheryl succinate selectively induces apoptosis in neuroblastoma cells: potential therapy of malignancies of the nervous system? J Neurochem 94:1448–1456

    Article  CAS  PubMed  Google Scholar 

  41. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival—application to proliferation and cytotoxicity assays. J Immunol Meth 65:55–63

    Article  CAS  Google Scholar 

  42. Neuzil J, Weber T, Schroder A et al (2001) Induction of cancer cell apoptosis by α-tocopheryl succinate: molecular pathways and structural requirements. FASEB J 15:403–415

    Article  CAS  PubMed  Google Scholar 

  43. Alleva R, Benassi MS, Tomasetti M et al (2005) α-Tocopheryl succinate induces cytostasis and apoptosis in osteosarcoma cells: the role of E2F1. Biochem Biophys Res Commun 331:1515–1521

    Article  CAS  PubMed  Google Scholar 

  44. Dong LF, Swettenham E, Eliasson J et al (2007) Vitamin E analogues inhibit angiogenesis by selective induction of apoptosis in proliferating endothelial cells: the role of oxidative stress. Cancer Res 67:11906–11913

    Article  CAS  PubMed  Google Scholar 

  45. Baksh S, Tommasi S, Fenton S et al (2005) The tumor suppressor RASSF1A and MAP-1 link death receptor signaling to bax conformational change and cell death. Mol Cell 18:637–650

    Article  CAS  PubMed  Google Scholar 

  46. Han J, Goldstein LA, Hou W, Rabinowich H (2007) Functional linkage between NOXA and Bim in mitochondrial apoptotic events. J Biol Chem 282:16223–16231

    Article  CAS  PubMed  Google Scholar 

  47. Han J, Goldstein LA, Gastman B et al (2004) Differential involvement of Bax and Bak in TRAIL-mediated apoptosis of leukemic T cells. Leukemia 18:1671–1680

    Article  CAS  PubMed  Google Scholar 

  48. Neuzil J, Tomasetti M, Zhao Y et al (2007) Vitamin E analogs, a novel group of “mitocans”, as anticancer agents: the importance of being redox-silent. Mol Pharmacol 71:1185–1199

    Article  CAS  PubMed  Google Scholar 

  49. Ralph SJ, Neuzil J (2009) Mitochondria as targets for cancer therapy. Mol Nutr Food Res 53:9–28

    Article  CAS  PubMed  Google Scholar 

  50. Wang XF, Birringer M, Dong LF et al (2007) A peptide conjugate of vitamin E succinate targets breast cancer cells with high ErbB2 expression. Cancer Res 67:3337–3344

    Article  CAS  PubMed  Google Scholar 

  51. Zhao Y, Li R, **a W, Neuzil J, Lu Y, Zhang H, Zhao X, Zhang X, Sun C, Wu K (2010) Bid integrates intrinsic and extrinsic signaling in apoptosis induced by α-tocopheryl succinate in human gastric carcinoma cells. Cancer Lett 288:42–49

    Article  CAS  PubMed  Google Scholar 

  52. Gogvadze V, Orrenius S, Zhivotovsky B (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 18:165–173

    Article  CAS  PubMed  Google Scholar 

  53. Chen L, Willis SN, Wei A et al (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403

    Article  CAS  PubMed  Google Scholar 

  54. Czabotar PE, Lee EF, van Delft MF et al (2007) Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc Natl Acad Sci USA 104:6217–6222

    Article  CAS  PubMed  Google Scholar 

  55. Mei YD, **e CW, **e W, Tian X, Li M, Wu M (2007) Noxa/Mcl-1 balance regulates susceptibility of cells to camptothecin-induced apoptosis. Neoplasia 9:871–881

    Article  CAS  PubMed  Google Scholar 

  56. Lee EF, Czabotar PE, van Delft MF et al (2008) A novel BH3 ligand that selectively targets Mcl-1 reveals that apoptosis can proceed without Mcl-1 degradation. J Cell Biol 180:341–355

    Article  CAS  PubMed  Google Scholar 

  57. Pérez-Galán P, Roué G, Villamor N, Montserrat E, Campo E, Colomer D (2006) The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood 107:257–264

    Article  PubMed  CAS  Google Scholar 

  58. Kang MH, Wan Z, Kang YH, Sposto R, Reynolds CP (2008) Mechanism of synergy of N-(4-hydroxyphenyl)retinamide and ABT-737 in acute lymphoblastic leukemia cell lines: Mcl-1 inactivation. J Natl Cancer Inst 100:580–595

    Article  CAS  PubMed  Google Scholar 

  59. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183–192

    Article  CAS  PubMed  Google Scholar 

  60. Marani M, Tenev T, Hancock D, Downward J, Lemoine NR (2002) Identification of novel isoforms of the BH3 domain protein Bim which directly activate Bax to trigger apoptosis. Mol Cell Biol 22:3577–3589

    Article  CAS  PubMed  Google Scholar 

  61. Merino D, Giam M, Hughes PD et al (2009) The role of BH3-only protein Bim extends beyond inhibiting Bcl-2-like pro-survival proteins. J Cell Biol 186:355–362

    Article  CAS  PubMed  Google Scholar 

  62. Fletcher JI, Meusburger S, Hawkins CJ et al (2008) Apoptosis is triggered when prosurvival Bcl-2 proteins cannot restrain Bax. ProcNatl Acad Sci USA 105:18081–18087

    Article  CAS  Google Scholar 

  63. Day CL, Chen L, Richardson SJ, Harrison PJ, Huang DCS, Hinds MG (2005) Solution structure of prosurvival Mcl-1 and characterization of its binding by proapoptotic BH3-only ligands. J Biol Chem 280:4738–4744

    Article  CAS  PubMed  Google Scholar 

  64. Sattler M, Liang H, Nettesheim D et al (1997) Structure of Bcl-xL-Bak peptide complex: Recognition between regulators of apoptosis. Science 275:983–986

    Article  CAS  PubMed  Google Scholar 

  65. Song LX, Coppola D, Livingston S, Cress D, Haura EB (2005) Mcl-1 regulates survival and sensitivity to diverse apoptotic stimuli in human non-small cell lung cancer cells. Cancer Biol Ther 4:267–276

    Article  CAS  PubMed  Google Scholar 

  66. Zhou P, Qian LP, Kozopas KM, Craig RW (1997) Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions. Blood 89:630–643

    CAS  PubMed  Google Scholar 

  67. Okumura K, Huang SB, Sinicrope FA (2008) Induction of Noxa sensitizes human colorectal cancer cells expressing mcl-1 to the small-molecule Bcl-2/Bcl-xL inhibitor, ABT-737. Clin Cancer Res 14:8132–8142

    Article  CAS  PubMed  Google Scholar 

  68. Dewson G, Kratina T, Sim HW et al (2005) To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3: groove interactions. Mol Cell 30:369–380

    Article  CAS  Google Scholar 

  69. Wang H, Takemoto C, Akasaka R et al (2009) Novel dimerization mode of the human Bcl-2 family protein Bak, a mitochondrial apoptosis regulator. J Struct Biol 166:32–37

    Article  CAS  PubMed  Google Scholar 

  70. Dewson G, Kratina T, Czabotar P, Day CL, Adams JM, Kluck RM (2009) Bak activation for apoptosis involves oligomerization of dimers via their α6 helices. Mol Cell 36:696–703

    Article  CAS  PubMed  Google Scholar 

  71. Sun F, Huo X, Zhai YJ et al (2005) Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121:1043–1057

    Article  CAS  PubMed  Google Scholar 

  72. Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27:639–645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Jurkat Bax/Bak and Jurkat Bax cells were provided by H. Rabinowicz (University of Pittsburgh, Pittsburgh, PA, USA), H1299 and MCF7DD9 cells by Dr. B. Vojtesek (Masaryk Memorial Institute, Brno, Czech Republic), and human recombinant TRAIL by Dr. L. Andera (Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic). This work was supported in part by grants from the Australian Research Council (to J.N. and P.K.W.), the Queensland Cancer Fund, the National Breast Cancer Foundation, the Grant Agency of the Academy of Sciences of the Czech Republic KAN200520703, IAA5005220602 and IAA5005200602 to J.N, by Concept Grant AV0Z50520514 awarded by the Academy of Sciences of the Czech Republic, by a grant from Ministry of Agriculture of the Czech Republic (Grant No. MZE 0002716202) to J.T. and by a grant from the Grant agency of the Czech Republic 204/09/P632 to L.P. L.P. was supported in part by the Apoptosis Research Group (Griffith University).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lubomir Prochazka or Jiri Neuzil.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10495-013-0912-9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prochazka, L., Dong, LF., Valis, K. et al. α-Tocopheryl succinate causes mitochondrial permeabilization by preferential formation of Bak channels. Apoptosis 15, 782–794 (2010). https://doi.org/10.1007/s10495-010-0482-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0482-z

Keywords

Navigation