Log in

Enhancement of hyperthermia-induced apoptosis by a new synthesized class of benzocycloalkene compounds

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The aim of this study was to examine whether, a new synthesized class of benzocycloalkene derivatives (BCs), enhances apoptosis induced by hyperthermia. The combined effects of hyperthermia (44°C, 20 min) and BCs on apoptosis in human lymphoma U937 cells were investigated. Among the tested compounds (BC1 ∼ 9), the combined treatment of 10 μM BC2 or BC4 and hyperthermia showed the largest potency to induce DNA fragmentation at 6 h after hyperthermia. And enhancement of hyperthermia-induced apoptosis by BC2 or BC4 in a dose-dependent manner was observed. When the cells were treated first with BC2 or BC4 at a nontoxic concentration of 20 μM, and exposed to hyperthermia afterwards, a significant enhancement of heat-induced apoptosis was evidenced by DNA fragmentation, morphological changes and phosphatidylserine externalization. Flow cytometry revealed an increase of intracellular superoxide due to BC2 or BC4, which was further increased when hyperthermia was combined. Mitochondrial membrane potential was decreased and the activation of caspase-3 and caspase-8 was enhanced in the cells treated with the combination. The activation of Bid, but no change of Bax and Bcl-2 were observed after the combined treatment. The release of cytochrome c from mitochondria to cytosol, which was induced by hyperthermia, was enhanced by BC2 or BC4. An increase in the intracellular Ca2+ concentration [Ca2+]i, externalization of Fas, and decrease in Hsp70 were observed following the combined treatment. These results indicate that the intracellular superoxide generated by BC2 or BC4 is involved in the enhancement of apoptosis through Fas-mitochondria caspase and [Ca2+]i-dependent pathways, and a decrease in Hsp70 also contributed to the enhancement of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dahl O, Mella O (2002) Referee: hyperthermia alone or combined with cisplatin in addition to radiotherapy for advanced uterine cervical cancer. Int J Hyperthermia 18:25–30

    Article  PubMed  CAS  Google Scholar 

  2. Prosnitz L, Jones E (2002) Counterpoint: test the value of hyperthermia in patients with carcinoma of the cervix being treated with concurrent chemotherapy and radiation. Int J Hyperthermia 18:13–18

    Article  PubMed  CAS  Google Scholar 

  3. Urano M, Kuroda M, Nishimura Y (1999) For the clinical application of thermochemotherapy given at mild temperatures. Int J Hyperthermia 15:79–107

    Article  PubMed  CAS  Google Scholar 

  4. Raff MC (1992) Social controls on cell survival and cell death. Nature 356:397–400

    Article  PubMed  CAS  Google Scholar 

  5. Arai Y, Kondo T, Tanabe K et al (2002) Enhancement of hyperthermia-induced apoptosis by local anesthetics on human histiocytic lymphoma U937 cells. J Biol Chem 277:18986–18993

    Article  PubMed  CAS  Google Scholar 

  6. Cui ZG, Kondo T, Matsumoto H (2006) Enhancement of apoptosis by nitric oxide released from alpha-phenyl-tert-butyl nitrone under hyperthermic conditions. J Cell Physiol 206:468–476

    Article  PubMed  CAS  Google Scholar 

  7. Li FJ, Kondo T, Zhao QL et al (2003) A lipophilic free radical initiator, 2,2′-azobis (2,4-dimethylvaleronitrile) (AMVN) enhances caspase-dependent apoptosis induced by hyperthermia. Int J Hyperthermia 19:165–177

    Article  PubMed  Google Scholar 

  8. Zhao QL, Fujiwara Y, Kondo T (2006) Mechanism of cell death induction by nitroxide and hyperthermia. Free Radic Biol Med 40:1131–1143

    Article  PubMed  CAS  Google Scholar 

  9. Li FJ, Kondo T, Zhao QL et al (2001) Enhancement of hyperthermia-induced apoptosis by a free radical initiator, 2,2′-azobis (2-amidinopropane) dihydrochloride, in human histiocytic lymphoma U937 cells. Free Radic Res 35:281–299

    Article  PubMed  CAS  Google Scholar 

  10. Wada S, Cui ZG, Kondo T et al (2005) A hydrogen peroxide-generating agent, 6-formylpterin, enhances heat-induced apoptosis. Int J Hyperthermia 21:231–246

    Article  PubMed  CAS  Google Scholar 

  11. Katschinski DM, Boos K, Schindler SG, Fandrey J (2000) Pivotal role of reactive oxygen species as intracellular mediators of hyperthermia-induced apoptosis. J Biol Chem 275:21094–21098

    Article  PubMed  CAS  Google Scholar 

  12. Matsuya Y, Masuda S, Itoh T, Murai T, Nemoto H (2005) A practical asymmetric synthesis of trans-4,5-benzhydrindan-1-ones as a precursor of A-nor B-aromatic steroidal compounds. J Org Chem 70:6898–6903

    Article  PubMed  CAS  Google Scholar 

  13. Matsuya Y, Ohsawa N, Nemoto H (2006) Accelerated electrocyclic ring-opening of benzocyclobutenes under the influence of a β-silicon atom. J Am Chem Soc 128:412–413

    Article  PubMed  CAS  Google Scholar 

  14. Matsuya Y, Ohsawa N, Nemoto H (2006) Facile transformation of benzocyclobutenones into 2,3-benzodiazepines via 4π–8πi tandem electrocyclic reactions involving net insertion of diazomethylene compounds. J Am Chem Soc 128:13072–13073

    Article  PubMed  CAS  Google Scholar 

  15. Matsuya Y, Sasaki K, Nagaoka M et al (2004) Synthesis of a new class of furan-fused tetracyclic compounds using o-quinodimethane chemistry and investigation of their antiviral activity. J Org Chem 69:7989–7993

    Article  PubMed  CAS  Google Scholar 

  16. Matsuya Y, Sasaki K, Ochiai H, Nemoto H (2007) Synthesis and biological evaluation of dihydrofuran-fused perhydrophenanthrenes as a new anti-influenza agent having novel structural characteristic. Bioorg Med Chem 15:424–432

    Article  PubMed  CAS  Google Scholar 

  17. Yu DY, Matsuya Y, Zhao QL et al (2007) Enhancement of hyperthermia-induced apoptosis by a new synthesized class of furan-fused tetracyclic compounds. Apoptosis 12:1523–1532

    Article  PubMed  CAS  Google Scholar 

  18. Sadana AK, Saini RK, Billups WE (2003) Cyclobutarenes and related compounds. Chem Rev 103:1539–1602

    Article  PubMed  CAS  Google Scholar 

  19. Nemoto H, Peng X, zhong W, **e J, kawamura T, Nishida M (2005) A method for the synthesis of 3a-aryl-substituted cyclopenta[1,2-b]furan derivatives. Synlett 20:3103–3106

    Google Scholar 

  20. Sellins KS, Cohen JJ (1987) Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes. J Immunol 139:3199–3206

    PubMed  CAS  Google Scholar 

  21. Hopcia KL, McCarey YL, Sylvester FC, Held KD (1996) Radiation-induced apoptosis in HL60 cells: oxygen effect, relationship between apoptosis and loss of clonogenicity, and dependence of time to apoptosis on radiation dose. Radiat Res 145:315–323

    Article  PubMed  CAS  Google Scholar 

  22. Zhao QL, Kondo T, Noda A, Fujiwara Y (1999) Mitochondrial and intracellular free-calcium regulation of radiation-induced apoptosis in human leukemic cells. Int J Radiat Biol 75:493–504

    Article  PubMed  CAS  Google Scholar 

  23. van Heerde WL, de Groot PG, Reutelingsperger CP (1995) The complexity of the phospholipid binding protein Annexin V. Thromb Haemost 73:172–179

    PubMed  Google Scholar 

  24. Datta R, Kojima H, Yoshida K, Kufe D (1997) Caspase-3-mediated cleavage of protein kinase C theta in induction of apoptosis. J Biol Chem 272:20317–20320

    Article  PubMed  CAS  Google Scholar 

  25. Cui ZG, Kondo T, Ogawa R et al (2004) Enhancement of radiation-induced apoptosis by 6-formylpterin. Free Radic Res 38:363–373

    Article  PubMed  CAS  Google Scholar 

  26. Gorman A, McGowan A, Cotter TG (1997) Role of peroxide and superoxide anion during tumour cell apoptosis. FEBS Lett 404:27–33

    Article  PubMed  CAS  Google Scholar 

  27. Yuki H, Kondo T, Zhao QL et al (2003) A free radical initiator, 2,2′-azobis (2-aminopropane) dihydrochloride enhances hyperthermia-induced apoptosis in human uterine cervical cancer cell lines. Free Radic Res 37:631–643

    Article  PubMed  CAS  Google Scholar 

  28. Salganik RI (2001) The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population. J Am Coll Nutr 20:464S–472S; discussion 473S–475S

    Google Scholar 

  29. Shackelford RE, Kaufmann WK, Paules RS (2000) Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med 28:1387–1404

    Article  PubMed  CAS  Google Scholar 

  30. Nunez G, Benedict MA, Hu Y, Inohara N (1998) Caspases: the proteases of the apoptotic pathway. Oncogene 17:3237–3245

    Article  PubMed  Google Scholar 

  31. Tsujimoto Y, Shimizu S (2000) Bcl-2 family: life-or-death switch. FEBS Lett 466:6–10

    Article  PubMed  CAS  Google Scholar 

  32. Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840

    PubMed  CAS  Google Scholar 

  33. Eguchi Y, Srinivasan A, Tomaselli KJ, Shimizu S, Tsujimoto Y (1999) ATP-dependent steps in apoptotic signal transduction. Cancer Res 59:2174–2181

    PubMed  CAS  Google Scholar 

  34. Beere HM, Wolf BB, Cain K et al (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475

    Article  PubMed  CAS  Google Scholar 

  35. Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2:476–483

    Article  PubMed  CAS  Google Scholar 

  36. Li M, Kondo T, Zhao QL et al (2000) Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondria-dependent pathways. J Biol Chem 275:39702–39709

    Article  PubMed  CAS  Google Scholar 

  37. Nemoto H, Fukumoto K (1998) Second generation of steroid synthesis via o-quinodimethane. Tetrahedron 54:5425–5464

    Article  CAS  Google Scholar 

  38. Davidson JF, Whyte B, Bissinger PH, Schiestl RH (1996) Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:5116–5121

    Article  PubMed  CAS  Google Scholar 

  39. Flanagan SW, Moseley PL, Buettner GR (1998) Increased flux of free radicals in cells subjected to hyperthermia: detection by electron paramagnetic resonance spin trap**. FEBS Lett 431:285–286

    Article  PubMed  CAS  Google Scholar 

  40. Frank J, Kelleher DK, Pompella A, Thews O, Biesalski HK, Vaupel P (1998) Enhancement of oxidative cell injury and antitumor effects of localized 44 degrees C hyperthermia upon combination with respiratory hyperoxia and xanthine oxidase. Cancer Res 58:2693–2698

    PubMed  CAS  Google Scholar 

  41. Yoshikawa T, Kokura S, Tainaka K et al (1993) The role of active oxygen species and lipid peroxidation in the antitumor effect of hyperthermia. Cancer Res 53:2326–2329

    PubMed  CAS  Google Scholar 

  42. Skibba JL, Quebbeman EJ, Kalbfleisch JH (1986) Nitrogen metabolism and lipid peroxidation during hyperthermic perfusion of human livers with cancer. Cancer Res 46:6000–6003

    PubMed  CAS  Google Scholar 

  43. Green DR (2000) Apoptotic pathways: paper wraps stone blunts scissors. Cell 102:1–4

    Article  PubMed  CAS  Google Scholar 

  44. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    PubMed  CAS  Google Scholar 

  45. Cartee L, Sankala H, Davis C et al (2002) 7-hydroxystaurosporine (UCN-01) and ionizing radiation combine to inhibit the growth of Bcl-2-overexpressing U937 leukemia cells through a non-apoptotic mechanism. Int J Oncol 21:351–359

    PubMed  CAS  Google Scholar 

  46. Esposti MD (2002) The roles of Bid. Apoptosis 7:433–440

    Article  PubMed  CAS  Google Scholar 

  47. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  PubMed  CAS  Google Scholar 

  48. Nitobe J, Yamaguchi S, Okuyama M et al (2003) Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas-mediated apoptosis in cardiac myocytes. Cardiovasc Res 57:119–128

    Article  PubMed  CAS  Google Scholar 

  49. Strasser A, Newton K (1999) FADD/MORT1, a signal transducer that can promote cell death or cell growth. Int J Biochem Cell Biol 31:533–537

    Article  PubMed  CAS  Google Scholar 

  50. Yin XM (2000) Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. Cell Res 10:161–167

    Article  PubMed  CAS  Google Scholar 

  51. Schett G, Steiner CW, Groger M et al (1999) Activation of Fas inhibits heat-induced activation of HSF1 and up-regulation of hsp70. Faseb J 13:833–842

    PubMed  CAS  Google Scholar 

  52. Macho A, Hirsch T, Marzo I et al (1997) Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. J Immunol 158:4612–4619

    PubMed  CAS  Google Scholar 

  53. Costantini P, Chernyak BV, Petronilli V, Bernardi P (1996) Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem 271:6746–6751

    Article  PubMed  CAS  Google Scholar 

  54. Nicotera P, Bellomo G, Orrenius S (1992) Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol 32:449–470

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, DY., Matsuya, Y., Zhao, QL. et al. Enhancement of hyperthermia-induced apoptosis by a new synthesized class of benzocycloalkene compounds. Apoptosis 13, 448–461 (2008). https://doi.org/10.1007/s10495-008-0178-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0178-9

Keywords

Navigation